Bài 1: Sự đồng biến và nghịch biến của hàm số

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Lê Ngọc Phương Uyên

undefined Cho em xin lời giải chi tiết với ạ

Nguyễn Việt Lâm
9 tháng 9 2021 lúc 16:02

Bạn cần câu nào nhỉ?

Nguyễn Việt Lâm
9 tháng 9 2021 lúc 17:52

f.

TXĐ: \(x\in(-\infty;-3]\cup[3;+\infty)\)

\(y'=\dfrac{2x}{2\sqrt{x^2-9}}=\dfrac{x}{\sqrt{x^2-9}}\)

Dấu của y':

undefined

Hàm đồng biến trên \([3;+\infty)\) và nghịch biến trên \((-\infty;-3]\)

g.

\(y'=4x^3-12x^2=4x^2\left(x-3\right)=0\Rightarrow x=3\) (khi tìm khoảng đơn điệu hay cực trị của hàm số thì chỉ cần quan tâm nghiệm bội lẻ, không cần quan tâm nghiệm bội chẵn)

Dấu của y':

undefined

Hàm đồng biến trên \(\left(3;+\infty\right)\) và nghịch biến trên \(\left(-\infty;3\right)\)

h.

\(y'=\dfrac{x^2+x+1-\left(x-2\right)\left(2x+1\right)}{\left(x^2+x+1\right)^2}=\dfrac{-x^2+4x+3}{\left(x^2+x+1\right)^2}\)

\(y'=0\Leftrightarrow-x^2+4x+3=0\Rightarrow\left[{}\begin{matrix}x=2-\sqrt{7}\\x=2+\sqrt{7}\end{matrix}\right.\)

Dấu của y':

undefined

Hàm đồng biến trên \(\left(2-\sqrt{7};2+\sqrt{7}\right)\)

Hàm nghịch biến trên các khoảng \(\left(-\infty;2-\sqrt{7}\right)\) và \(\left(2+\sqrt{7};+\infty\right)\)


Các câu hỏi tương tự
An Nhiên
Xem chi tiết
An Nhiên
Xem chi tiết
Phạm Minh Trà
Xem chi tiết
An Nhiên
Xem chi tiết
An Nhiên
Xem chi tiết
mai thanh
Xem chi tiết
mai thanh
Xem chi tiết
mai thanh
Xem chi tiết