Bài 1: Sự đồng biến và nghịch biến của hàm số

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
mai thanh

giải dùm em câu 1,3,4,6 vs ạ em cảm ơn và em cần gấp lắmundefined

Nguyễn Việt Lâm
17 tháng 9 2021 lúc 19:04

1.

\(y'=x^2-6x+5=0\Rightarrow\left[{}\begin{matrix}x=1\\x=5\end{matrix}\right.\)

Dấu của y' trên trục số:

undefined

Hàm đồng biến trên các khoảng \(\left(-\infty;1\right)\) và \(\left(5;+\infty\right)\)

Hàm nghịch biến trên \(\left(1;5\right)\)

3.

TXĐ: \(D=R\backslash\left\{2\right\}\)

\(y'=\dfrac{-5}{\left(x-2\right)^2}< 0;\forall x\in D\)

Hàm nghịch biến trên các khoảng \(\left(-\infty;2\right)\) và \(\left(2;+\infty\right)\)

Nguyễn Việt Lâm
17 tháng 9 2021 lúc 19:07

4.

\(y'=4x^3+4x=4x\left(x^2+1\right)=0\Rightarrow x=0\)

Dấu của y':

undefined

Hàm đồng biến trên \(\left(0;+\infty\right)\)

Hàm nghịch biến trên \(\left(-\infty;0\right)\)

6.

Từ đồ thị ta thấy hàm đồng biến trên các khoảng \(\left(-\infty;-1\right)\) và \(\left(1;+\infty\right)\)

Hàm nghịch biến trên \(\left(-1;1\right)\)


Các câu hỏi tương tự
mai thanh
Xem chi tiết
mai thanh
Xem chi tiết
Ngân Lê Hoàng
Xem chi tiết
Ngân Lê Hoàng
Xem chi tiết
Ngân Lê Hoàng
Xem chi tiết
An Nhiên
Xem chi tiết
An Nhiên
Xem chi tiết
Thanh Ngo
Xem chi tiết
An Nhiên
Xem chi tiết