cho đường tròn tâm (O;R) đường kính AB và điểm M trên đường tròn O sao cho góc MAB= 60 độ. Kẻ dây MN vuông góc với AB tại H:
1. Chứng minh AM và AN là các tiếp tuyến của đường tròn (B;BM)2. Chứng minh MN2= 4AH.HB3. Chứng minh tam giác BMN là tam giác đều và điểm O là trọng tâm của nó4. Tia MO cắt đường tròn (o) tại E, tia MB cắt (B) tại F. Chứng minh 3 điểm: N,E,F thẳng hàng.1: ΔOMN cân tại O
mà OA vuông góc MN
nên OA là trung trực của MN
=>AM=AN
góc AMB=góc ANB=1/2*sđ cung AB=90 độ
Xét ΔAMB vuông tại M và ΔANB vuông tại N có
AB chung
AM=AN
=>ΔAMB=ΔANB
=>BM=BN
=>AM,AN là tiếp tuyến của (B;BM)
2: MH^2=AH*HB
=>4*MH^2=4*AH*HB
=>MN^2=4*AH*HB
3: góc MBA=90-60=30 độ
=>góc MBN=60 độ
=>ΔMBN đều