cho tam giác ABC nội tiếp đường tròn (O), từ B vẽ đường vuông góc AB tại B cắt (O) tại D
a) Chứng tỏ AD là đường kính của (O)
b) Tính góc ACD
c) Gọi H là trực tâm tam giác ABC, tứ giác BHCD là hình gì? Vì sao ?
Cho đường tròn tâm O đường kính AB; trên nửa đường tròn lấy điểm C sao cho AC>AB, qua C dựng đường thẳng vuông góc với OC cắt đường thẳng AB tại D. Kẻ CH vuông góc với AB (H thuộc AB), kẻ BK vuông góc với CD ( K thuộc CD); đường kính CH cắt đường thẳng BK tại E. a) Chứng minh 4 điểm C,H,B,K cùng thuộc 1 đường tròn. b) Cm KH//AC. c) Cm BH.AD=AH.BD
cho hình vuông ABCD, gọi O là giao điểm 2 đường chéo, OA= 3 căn 2 cm. Vẽ đường tròn tâm B bán kính 6cm. Hỏi trong 4 điểm O, A, C, D điểm nào nằm trong, trên, ngoài đường tròn?
Cho ABC vuông tại A, đường cao AH. Vẽ đường tròn (I) có đường kính HB cắt
cạnh AB tại D. Vẽ đường tròn (K) đường kính HC cắt AC tại E.
a) Chứng minh tứ giác ADHE là hình chữ nhật.
b) Chứng minh AD.AB AE.AC .
c) Cho AB 3cm,BC 5cm . Tính DE và diện tích tứ giác DEKI.
Cho tam giác ABC nhọn vẽ đường tròn tâm O đường kính BC cắt tại AB và AC lần lượt tại D và E. Gọi H là giao điểm của BE và CD chứng minh H là trực tâm của tam giác ABC Từ đó suy ra AH vuông góc với BC
Cho tam giác ABC nhọn vẽ đường tròn tâm O đường kính AC nó cắt cạnh AB ,BC theo thứ tự ở H và K
a)Chứng minh CH vuông góc AB, AK vuông góc AC
b) gọi I là giao điểm của AK và CH chứng minh BI vuông góc AC
Cho hình vuông ABCD, O là giao điểm của hai đường chéo, \(OA=\sqrt{2}\), Vẽ đường tròn tâm A bán kính 2cm. Trong năm điểm A, B, C, D, O, điểm nào nằm trên đường tròn ? Điểm nào nằm trong đường tròn ? Điểm nào nằm ngoài đường tròn ?
Cho tam giác ABC cân tại A, nội tiếp dduwwongf tròn (O). Đường cao AH cắt đường tròn ở D
a) Vì sao AD là đường kính của đường tròn (O) ?
b) Tính số đo góc ACD
c) Cho BC = 24 cm, AC = 20 cm. Tính đường cao AH và bán kính đường tròn (O)
cho đường tròn (O) đường kính A.Trên đường tròn lấy điểm C sao cho AC<BC (C khác A).các tiếp tuyến tại B và C của đương tròn tâm O cắt nhau ở điểm D.AD cắt đường tròn tâm O tại E (E khác A).DO cắt BC tại F
a) Chứng minh BC vuông góc OD
b) chứng minh DF.DO=DE.DA