góc AKB=1/2*sđ cung AB=90 độ
Xét ΔNKI vuông tại K và ΔNMB vuông tại M có
góc N chung
=>ΔNKI đồng dạng với ΔNMB
=>NK/NM=NI/NB
=>NM*NI=NK*NB
Xét ΔNDK và ΔNBC có
góc NDK=góc NBC
góc N chung
=>ΔNDK đồng dạng với ΔNBC
=>ND/NB=NK/NC
=>ND*NC=NK*NB=NM*NI
góc AKB=1/2*sđ cung AB=90 độ
Xét ΔNKI vuông tại K và ΔNMB vuông tại M có
góc N chung
=>ΔNKI đồng dạng với ΔNMB
=>NK/NM=NI/NB
=>NM*NI=NK*NB
Xét ΔNDK và ΔNBC có
góc NDK=góc NBC
góc N chung
=>ΔNDK đồng dạng với ΔNBC
=>ND/NB=NK/NC
=>ND*NC=NK*NB=NM*NI
Câu 4(3d) Cho đường tròn tâm O, đường kính AB. Lấy điểm C trên đường tròn sao cho số đo c AC bằng 60°. Vẽ dây CD vuông góc với AB tại M, dây BC cắt đường tròn đường kí BO tại điểm thứ hai là I a) Chứng minh Ol//AC và ba điểm O:I;D thẳng hàng b)Xác định vị trí tương đối của đường thẳng MI với đường tròn đường kính BO c) Gọi N là điểm nằm giữa O và D. Tia CN cắt đường thẳng AD tại K, đường thẳng cắt đường thẳng OK tại E. Chứng minh tứ giác AOED nội tiếp
Cho đường tròn (O) đường kính AB cố định. Từ điểm C bất kỳ trên đoạn OA vẽ dây MN vuông góc với AB. Lấy điểm D thuộc cung AM nhỏ; BD cắt MN tại E; AD cắt tia NM tại F. a) Chứng minh : tứ giác ADEC nội tiếp. b) Chứng minh: CA.CB = CE.CF c) Tia AE cắt đường tròn ngoại tiếp tam giác DEF tại điểm I. Chứng minh I nằm trên đường tròn O. d) Xác định vị trí của điểm C trên OA sao cho chu vi tam giác OCN lớn nhất
1. Cho đường tròn (O) đường kính AB và dây CD vuông góc với AB tại F. Trên cung BC lấy điểm M. nối A với M cắt CD tại E
a. Chứng minh AM là phân giác của góc CMD
b. Chứng minh tứ giác EFBM nội tiếp
c. Chứng minh AC2=AE.AM
d. Gọi giao điểm CB với AM là N; MD với AB là I. Chứng minh NI//CD
e. Chứng minh N là tâm đường tròn nội tiếp tam giác CIM
Help me ~ . ~
cho đường tròn (O) tâm O, đường kính AB. lấy M là trung điểm của OB, vẽ đường (M) tâm M bán kính MB. gọi d là đường thẳng đi qua M và vuông góc với AB. trên (O) lấy điểm D sao cho dây BD cắt d tại N (D không trùng với A và N ). đường thẳng AN cắt (O) tại điểm thứ hai là C, đường thẳng OC cắt (M) tại điểm thứ hai là P a chứng minh tứ giác ADNM là tứ giác nội tiếp b chứng minh cung BC của (O) và cung BP của (M) có độ dài bằng nhau c chứng minh góc MCD = góc AOD
Cho đường tròn (O;R) đường kính AB. Gọi I là dây cung của OA. Vẽ dây CD vuông góc với OA tại I. Lấy điểm E tùy ý trên cung nhỏ BC (E khác B và C). Gọi K là giao điểm của AE và BC. Kẻ KH vuông góc AB (H thuộc AB)
1) Chứng minh rằng BEHK là tứ giác nội tiếp.
2) Chứng minh rằng HK là tia phân giác của EHC và ba điểm E, H, D thẳng hàng.
3) Tìm vị trí của điểm E trên cung nhỏ BC sao cho chu vi ACEB lớn nhất.
Từ điểm C nằm ngoài đường tròn tâm O vẽ cát tuyến CAB. Từ điểm N chính giữa của cung nhỏ AB kẻ đường kính NM cắt AB tại I, CM cắt đường tròn tại E,EN cắt đường thẳng AB tại F. Chứng minh:
1) Tứ giác MEFI nội tiếp
2) Góc EFC = góc EBN
3) CA.CB = CF.CI
cho nửa đường tròn tâm O có đường kính AB=2R. Trên đường tròn O lấy điểm M ( MA<MB) . Tiếp tuyến tại M của O cắt hai tiếp tuyến tại A và B của đường tròn O lần lượt tại C và D a) chứng minh CD = AC+BD b) vẽ đường thẳng BM cắt tia AC tại E và vẽ MH vuông góc với AB tại H Chứng minh OC song song MB và ME.MB=AH.AB c) CM HM là tia phân giác của góc CHD
Cho nửa đường tròn tâm O đường kính AB=2R, I là trung điểm AO.Dựng đường thẳng d đi qua I vuông góc với AB cắt đường tròn tại K. Lấy 1 điểm C thuộc IK, AC cắt nửa đường tròn tại M. Tiếp tuyến qua M cắt d tại N, BM cắt d tại D.
a) Chứng minh N là trung điểm CD
b) Tính CD khi C là trung điểm của IK
Cần Ý B