Cho nửa đường tròn tâm O đường kính AB. LẤY điểm C nằm giữa A và B. Qua C kẻ đường thẳng vuông góc với AB cắt đường tròn tâm O tại I. Trên cung nhỏ BI lấy điểm M ( M khác B và I ) BM cắt CI tại D a) Chứng minh tứ giác ACMD nội tiếp b) Tiếp tuyến tại M của đường tròn tâm O cắt CI tại N. Gọi giao điểm của AM và CI là K. Chứng minh tam giác NMK cân c) Khi M thay đổi trên cung nhỏ BI chứng minh đường tròn ngoại tiếp tam giác AKD luôn đi qua một điểm cố định khác điểm A Giúp với ạ
Cho tam giác ABC vuông tại A, ∠ABC = 60◦
, AB = a.
a) Xác định tâm O và tính bán kính đường tròn ngoại tiếp tam giác ABC.
b) Vẽ đường cao AH. Đường tròn đường kính BH cắt AB tại D và đường tròn đường
kính CH cắt AC tại E. Tứ giác ADHE là hình gì? Tính DE.
c) Chứng minh rằng AO⊥DE.
giúp mình câu b) tam giác đồng dạng
cho (O) và điểm P nằm ngoài đường tròn. từ P vẽ 2 tiếp tuyến PA và PB với đường tròn tâm O (A,B là 2 tiếp điểm) PO cắt đường tròn tâm O tại K và I (K nằm giữa P vã O) và cắt AB tại H.gọi D là điểm dx của B qua O; C là giao điểm của PD và (O) a)c/m t/g BHCPnt b)c/m tam giác PCH đồng dạng tam giác POD và AC vuong gocCH c)đường tròn ngoại tiếp tam giác ACH cắt IC tại M, AM cắt IB tại Q, BM cắt HQ tại G.C/M đường thẳng AG đi qua trung điểm BQ
Cho đường tròn (O;R) từ M nằm ngoài đường tròn (O;R) vẽ tiếp tuyến MA (A là tiếp điểm) . Vẽ AH vuông góc với OM
a) Tính OH.OM theo R
b) Vẽ đường kính AB, BM cắt đường tròn (O;R) tại C. Vẽ OI vuông góc với BC tại I. CMR: OI//AC
c) CM: MH.MO= MB.MC
d) Biết OH cắt OI và BC tại N và K. CMR: HK+HN> 2.AH
cho tam giác ABC vuông tại A, đường cao AH. Biết AB=12cm;AC=16cm. Vẽ đường tròn tâm B bán kính AB. Đường tròn tâm B cắt BC tại D và E (E nằm giữa B và C) và cắt AH tại K (K khác A). Vẽ đường kính AN của đường tròn tâm B. a)Tính AH, BH, CH b)Chứng minh CK là tiếp tuyến đường tròn tâm B c)Đường thẳng NC cắt đường tròn tâm B tại M. Chứng minh CE.CD=CM.CN d)Tính \(\dfrac{S_{CMH}}{S_{CNB}}\) (tỉ số diện tích tam giác CMHvà tam giác CNB)
Bài 1: Cho 3 điểm M, N, P theop thứ tự đó cùng nằm trên 1 đt. Vẽ đường tròn tâm O bán kính R. Đường kính Np. Từ M kẻ tiếp tuyến MK với đường tròn tâm O (K là tiếp điểm). Tiếp tuyến tại N của đường tròn tâm O cắt MK tại D. Từ O kẻ đường thẳng cuông góc với OD cắt MK tại E
a) CMR KD.KE = R2
b) EP là tiếp tuyến của đường tròn tâm O
|(*mink đag cần rất gấp)
Cho ∆ABC nhọn (AB<AC) nội tiếp đường tròn (O;R), hai đường cao BE và CF cắt nhau tại H.
a) Cm tứ giác BCEF nội tiếp. Xác định tâm K của đường tròn ngoại tiếp tứ giác BCEF.
b) Vẽ đường kính AI của (O), tia EF và CB cắt nhau tại M. Chứng minh H, K, I thẳng hàng và cm MB.MC=MF.ME
c) Tia MH cắt AK tại D, MA cắt (O) tại T. Cm T, H, K thẳng hàng
d) Giả sử BÂC=60°. Tính bán kính của đường tròn ngoại tiếp tứ giác DEFH theo R.
cho tam giác ABC có ba góc nhọn (AB∠AC) nội tiếp đường tròn (o) vẽ tiếp tuyến tại A của đường tròn(o) cắt đường thẳng BC tại S tia phân giác của góc BAC cắt BC tại K và cắt đường tròn (o) tại E ,OE cắt dây BC tại I a/ chứng minh:SA2 =SB*SC b/chứng minh:OE⊥BC tại I d/vẽ tiếp tuyến SD của đường tròn (o) D là tiếp điểm D khác A . chứng minh:tứ giác SAOD nội tiếp được đường tròn và I