Xét ΔOBA vuông tại A có \(cosBOA=\dfrac{OA}{OB}=\dfrac{1}{2}\)
nên \(\widehat{BOA}=60^0\)
Xét ΔOAC có OA=OC và \(\widehat{AOC}=60^0\)
nên ΔOAC đều
=>\(sđ\stackrel\frown{AC}\left(nhỏ\right)=60^0\)
Số đo cung AC lớn là:
\(360-60=300^0\)
Xét ΔOBA vuông tại A có \(cosBOA=\dfrac{OA}{OB}=\dfrac{1}{2}\)
nên \(\widehat{BOA}=60^0\)
Xét ΔOAC có OA=OC và \(\widehat{AOC}=60^0\)
nên ΔOAC đều
=>\(sđ\stackrel\frown{AC}\left(nhỏ\right)=60^0\)
Số đo cung AC lớn là:
\(360-60=300^0\)
Cho đường tròn (O:R) và một điểm M nằm ngoài đường tròn sao cho MO=2R. Từ M vẽ tiếp tuyến MA với (O); tia OM cắt đường tròn tại B
a) Tính số đo cung AB
b) Kẻ tiếp tuyến MC với (O). Chứng minh OM vuông góc với AC
c) Gọi H là giao điểm của AC và OB. Chứng minh HA.HC=HB.HM
d) Chứng minh OABC là hình thoi
cho đường tròn tâm O và một điểm M nằm ngoài đường tròn . Qua M vẽ các tiếp tuyến MA,MB với đường tròn tâm O . Biết \(\widehat{AMB}\) = 54 độ . Hỏi 2 bán kính OA,OB tạo thành góc ở tâm \(\widehat{AOB}\) bằng bao nhiêu độ
cho đường tròn tâm o đường kính ab dây bd cắt tiếp tuyến a ở m ngoài đường tròn số đo cung nhỏ bd bằng 60 độ .số đo amb bằng
Cho đường tròn(O;R) và một điểm A nằm ngoài đường tròn sao cho OA = 2R. Từ A kẻ hai tiếp tuyến AB, AC tới đường tròn ( b và c là các tiếp điểm ). Tìm số đo cung lớn BC của đường tròn (O).
Hai tiếp tuyến của đường tròn (O) tại A và B cắt nhau tại M. Biết \(\widehat{AMB}=35^o.\)
a) Tính số đo của góc ở tâm tạo bở hai bán kính OA, OB.
b) Tính số đo mỗi cung AB (cung lớn và cung nhỏ).
Cho hai đường tròn cùng tâm O với bán kính khác nhau. Hai đường thẳng đi qua O cắt hai đường tròn đó tại các điểm A, B, C, D, M, N, P, Q.
a) Em có nhận xét gì về số đo của các cung nhỏ AM, CP, BN, DQ?
b) Hãy nêu tên các cung nhỏ bằng nhau.
c) Hãy nếu tên hai cung lớn bằng nhau.
Bài 1: Cho đường tròn ( O ; R ), điểm A và B nằm trên đường tròn sao cho góc AOB = 120 độ, điểm C nằm trên cung AB sao cho góc AOC = 160 độ.
a) Liệt kê các góc ở tâm, và cho biết góc đó chắn cung nào?
b) Tính số đo cung nhỏ AB và cung lớn AnB, cung nhỏ BC, cung lớn BnC
Bài 2: Cho đường tròn ( O ; R ), dây AB = R
a) Tính số đo cung nhỏ AB và cung lớn AnB
b) Tính độ dài đoạn OI theo R với I là trung điểm AB
c) Tiếp tuyến A tại B cắt nhau tại M. Chứng minh 3 điểm O, I và M thẳng hàng
Cho hai đường tròn đồng tâm (O; R) và (O' R') với R > R'. Tiếp tuyến của đường tròn (O' R') tại A cắt đường tròn (O; R) tại B và C. Tia OA cắt đường tròn (O; R) tại E. So sánh \(\stackrel\frown{EB}\) và \(\stackrel\frown{EC}\)