Từ điểm A nằm bên ngoài đường tròn (O ) vẽ hai tiếp tuyến AB, AC lần lượt tại B, C của (O ) .
1) Chứng minh tứ giác ABOC nội tiếp đường tròn.
2) Vẽ hai đường kính BD, CE của (O ) , gọi I là giao điểm của AO và BC, gọi F là giao điểm của đường thẳng DI và (O ) , với F khác D. Chứng minh ba điểm A, E, F thẳng hàng.
giúp vs ạ!!!
Cho đường tròn tâm O bán kính R và điểm M ở ngoài đường tròn đó. Qua điểm M kẻ hai tiếp tuyến MA, MB và cát tuyến MCD với đường tròn (O), trong đó điểm C ở giữa hai điểm M, D. Đường thẳng qua điểm C và vuông góc với OA cắt AB tại H. Gọi I là trung điểm của dây CD.
Chứng minh : HI // AD
Cho điểm M nằm ngoài đường trong (O; R) sao cho OM = 2R. Qua M vẽ hai tiếp tuyến MA, MB với đường tròn (O; R) (A, B là các tiếp điểm) và kẻ cát tuyến MCD của đường tròn (O; R) cắt đoạn thẳng OA (C nằm giữa M và D). Gọi I là trung điểm của dây cung CD và H là giao điểm của AB với OM.
a) Góc MAB có phải là góc tạo bởi tia tiếp tuyến và dây cung của (O) ? vì sao?
b) Tính góc MOA và số đo cung AB
c) Chứng minh: MC.MD=MH.MO
d) Chứng minh HA là phân giác của góc DHC
e) Khi cát tuyến MCD thay đổi thì trọng tâm tam giác ACD chạy trên đường nào?
Giải giúp mình câu e với, mình cảm ơn.
từ 1 điểm A nằm ngoài (O) vẽ AB,AC tiếp tuyến với đường tròn . Qua O vẽ đường thẳng vuông góc OB, cắt AC tại M. Chứng minh: a) ABOC nội tiếp. b) Tam giác MOA cân
Từ điểm A nằm ngoài đường tròn (O) kẻ hai tiếp tuyến AM và AN đến đường tròn (M và N là tiếp điểm). Đường thẳng MO cắt đường tròn tại điểm P. Đường thẳng vuông góc với OA tại O cắt AN tại C và cắt AM tại B.
1) Chứng minh bốn điểm A, M, O, N cùng thuộc một đường tròn.
2) Chứng minh CP là tiếp tuyến tại P với đường tròn. Suy ra MB= CN .
P/S: Vẽ cho mình hình với ạ vì chủ yếu mình cần hình,phần a ko cần đâu chỉ cần làm phần b thôi ạ
Cho (O ;R). Từ một điểm A bên ngoài đường tròn kẻ hai tiếp tuyến AB, AC (B, C là tiếp điểm). I là một điểm thuộc đoạn BC ( IB < IC ). Qua I kẻ đường thẳng d vuông góc với OI cắt AB và AC thứ tự tại E và F
1. Chứng minh các tứ giác OIBE và OIFC nội tiếp được
2. Chứng minh I là trung điểm của EF
3. Gọi K là điểm thuộc cung nhỏ BC. Tiếp tuyến tại K của (O) cắt AB và AC tại M và N, tính chu vi tam giác AMN theo R nếu OA = 2R
4. Qua O kẻ đường thẳng vuông góc với AO cắt AB, AC thứ tự tại P và Q. Tìm vị trí của A để diện tích tam giác APQ nhỏ nhất
Cho đường tròn tâm O đường kính AB. Lấy điểm C nằm trên đường tròn sao cho số đo cung AC gấp đôi số đo cung CB. Tiếp tuyến tại B với đường tròn (O) cắt AC tại E. Gọi I là trung điểm của dây AC. a) Chứng minh rằng tứ giác IOBE nội tiếp b) Chứng minh EB→ = EC . EA c) Biết bán kính đường tròn (O) bằng 2cm, tính diện tích tam giác ABE. Giải giúp em với ạ
Bài 1: Cho đường tròn (O;R) và điểm S ở ngoài (O). Qua S kẻ các tiếp tuyến SA, SB với (O) trong đó A, B là các tiếp điểm. Gọi M là trung điểm của SA, BM cắt đường tròn (O) tại điểm thứ hai C
a) Chứng minh tứ giác OASB nội tiếp
b) Chứng minh MA2 = MB.MC
c) Gọi N đối xứng với C qua M. Chứng minh góc CSA = góc MBS
d) Chứng minh NO là tia phân giác của góc ANB
Cho ∆ABC nhọn (AB < AC) nội tiếp đường tròn (O) có hai đường cao BN và CD cắt nhau tại H. a) Chứng minh tứ giác BDNC nội tiếp, xác định tâm và bán kính đường tròn này. b) Vẽ đường kính AK của đường tròn (O). Chứng minh: BH = CK. c) Chứng minh: AK ⊥ DN