a. Theo tc 2 tt cắt nhau: \(AC=AM;BM=BD\)
\(\Rightarrow AC+BD=AM+BM=AB\)
b. \(\left\{{}\begin{matrix}\widehat{AMO}=\widehat{ACO}=90^0\\AC=AM\\AO.chung\end{matrix}\right.\Rightarrow\Delta AOC=\Delta AOM \)
\(\Rightarrow\widehat{COA}=\widehat{AOM}=\dfrac{1}{2}\widehat{COM}\)
\(\left\{{}\begin{matrix}\widehat{ODB}=\widehat{OMB}=90^0\\BD=MB\\OB.chung\end{matrix}\right.\Rightarrow\Delta OBD=\Delta OBM\\ \Rightarrow\widehat{DOB}=\widehat{BOM}=\dfrac{1}{2}\widehat{DOM}\)
\(\Rightarrow\widehat{AOB}=\widehat{AOM}+\widehat{BOM}=\dfrac{1}{2}\left(\widehat{COM}+\widehat{DOM}\right)=\dfrac{1}{2}\cdot180^0=90^0\\ \Rightarrow\Delta OAB\text{ vuông tại O}\)
c. Áp dụng HTL: \(AM\cdot MB=OM^2=R^2\)
Mà \(CD=2R;AM=AC;BM=BD\)
Vậy \(AC\cdot BD=AM\cdot BM=R^2=\left(\dfrac{CD}{2}\right)^2=\dfrac{CD^2}{4}\)