Cho đường tròn (O;R) đường kính AC. Trên đoạn thẳng OC lấy điểm B và vẽ đường tròn (O') có đường kính BC. Gọi M là trung điểm của AB, qua M kẻ đây cung vuông góc với AB cắt đường tròn (O) tại D và E. Nối CD cắt đường tròn (O') Tại i
a)Tứ giác DAEB là hình gì? vì sao?
b) Chứng minh MI=MD và MI là tiếp tuyến của (O')
c) Gọi H là hình chiếu của i trên BC. Chứng minh CH.MB=BH.MC
Cho nửa đường tròn(O) đường kính AB. Gọi M là điểm bất kỳ nằm trên đường tròn(M khác A và M khác B). Vẽ đường tròn(M) tiếp xúc với AB tại H. Từ A và B lần lượt vẽ hai tiếp tuyến AC và BD với (M)(C,D là hai tiếp điểm)
a) Chứng minh C,M,D thẳng hàng
b) Chứng minh tổng AC+BD luôn không đổi khi M∈(O)
c) CD và AB cắt nhau tại K. Chứng minh \(OH\cdot OK=\dfrac{AB^2}{4}\)
cho đường tròn (O) bán kính R , đường thẳng d không đi qua O và cắt đường tròn tại 2 điểm A và B, từ 1 điểm C thuộc đường thẳng d, A nằm giữa B và C, vẽ tiếp tuyến CN với đường tròn , N thuộc cung lớn AB . Gọi E là trung điểm của AB
a) cm 4 điểm C,E,O,N cùng thuộc 1 đường tròn
b) cm CN2 = CA.CB
c) Gọi H là hình chiếu của N trên OC . cm ˆOABOAB^= ˆCHACHA^.
Tia CO cắt đường tròn (O) tại 2 điểm D,I , I nằm giữa C và D. Cm IC.DH = DC.IH
Cho đường tròn (O) và đường thẳng (d) cắt đường tròn (O) tại hai điểm M; N ( đường thẳng (d) không đi qua O). Lấy điểm A thuộc đường thẳng (d) (A nằm ngoài đường tròn). Qua A kẻ hai tiếp tuyến AB và AC với đường tròn (B, C là tiếp điểm).a) Chứng minh đường tròn ngoại tiếp tam giác ABC luôn đi qua hai điểm cố định khi A di chuyển trên (d).b) Kẻ tiếp tuyến tại M và N của đường tròn (O) cắt nhau tại P. Chứng minh B; C; P thẳng hàng.c) Kẻ đường kính BOD, đường thẳng qua O vuông góc với BD cắt CD tại E. Chứng minh AOCE là hình thang cân
Cho 3 điểm A,B,C theo thứ tự đó nằm trên cùng một đường thẳng. Vẽ đường tròn ( O;R ) có đường kính là BC. Từ A kẻ tiếp tuyến AM với đường tròn ( O ),( M là tiếp điểm). Tiếp tuyến tại B của đường tròn ( O ) cắt AM tại D. Từ O kẻ đường thẳng vuông góc với OD cắt đường thẳng AM ở E. Chứng minh rằng:
a) MD × ME=R ²
b) EC là tiếp tuyến của đường tròn ( O )
c) DM×AE=AD×EM
Bài 14: Cho đường tròn (O;R) Lấy M cách O một khoảng cách = 2R. Từ M kẻ các tiếp tuyến MA và MB với đường tròn (A và B là các tiếp điểm). Đoạn thẳng OM cắt đường tròn (O) tại C. Đường Thẳng qua O và vuông góc với OB cắt OA tại D. Đường thẳng DC cắt MB tại điểm E.
a) Chứng minh Tam giác MAB là Tam giác đều
b) Chứng minh rằng Tam giác DMO cân tại D
c) Chứng minh rằng DE là tiếp tuyến của đường tròn (O)
Bài 3: (3,5 điểm) Cho đường tròn (O), đường kính AB bằng 2R. Qua A và B lần lượt
kẻ 2 tiếp tuyền d và d' với đường tròn. Từ một điểm M trên đường thẳng d vẽ tia MO
cắt đường thẳng d' ở P. Từ O vẽ một tia vuông với MP và cắt đường thắng d' ở D
a) Chứng minh O là trung điểm của MP và tam giác MDP cân
b) Hạ OI 1 MD (I E MD). Chứng minh IE (O) và DM là tiếp tuyến của đường
tròn (0).
c) Chứng minh : Tích AM.BD không phụ thuộc vào vị trí của điểm M.
d) Tính diện tích của tứ giác AMDB theo R khi MO = 2R
Cho nửa đường tròn tâm O đường kính AB=2R.Trên nửa mặt phẳng bò AB chứa nửa đường tròn vẽ 2 tiếp tuyến Ax và By.Lấy C bất kì thuộc nửa đường tròn (C khác A và B) qua C kẻ tiếp tuyến của nửa đường tròn cắt Ax và By Theo thứ tự tại M và N đoạn thẳng On cắt nửa đường tròn tại I
Chứng minh I là tâm đường tròn nội tiếp tam giác CNB
Cho nửa đường tròn tâm O bán kính R đường kính AB, H là trung điểm của OA. Qua H vẽ đường thẳng vuông góc với OA cắt nửa đường tròn tâm O tại C. Gọi E và F là hình chiếu vuông góc của H trên AC và BC. d) Đường thẳng EF cắt nửa đường tròn tâm O tại M,N. Chứng minh rằng CM = CN