Cho đường tròn (O;R), 2 đường kính vuông AB và CD vuông góc với nhau. Xác định vị trí điểm M trên đường tròn O để MA.MB.MC.MD lớn nhất.
Cho đường tròn (O) và một điểm P nằm trong đường tròn. Một đường thẳng d thay đổi qua P, cắt đường tròn tại A và B. Gọi H là trung điểm của AB
a)Chứng minh H nằm trên một đường tròn cố định
b)Đường thẳng d ở vị trí nào thì dây AB có độ dài lớn nhất?
c,Gỉa sử d vuông góc với AP . CM ở vị trí này AB có độ dài bé nhất
Cho 3 điểm A,B,C theo thứ tự đó nằm trên cùng một đường thẳng. Vẽ đường tròn ( O;R ) có đường kính là BC. Từ A kẻ tiếp tuyến AM với đường tròn ( O ),( M là tiếp điểm). Tiếp tuyến tại B của đường tròn ( O ) cắt AM tại D. Từ O kẻ đường thẳng vuông góc với OD cắt đường thẳng AM ở E. Chứng minh rằng:
a) MD × ME=R ²
b) EC là tiếp tuyến của đường tròn ( O )
c) DM×AE=AD×EM
Từ một điểm A nằm ngoài đường tròn (O;R), vẽ hai tiếp tuyến AB, AC với đường tròn (B và C là các tiếp điểm).
1) Chứng minh rằng: 4 điểm A, B, C, O cùng nằm trên một đường tròn. 2) Chứng minh rằng: AO vuông góc BC tại trung điểm H của BC. 3) Chứng minh rằng: \(\dfrac{OB^2}{AC^2}=\dfrac{HO}{HA}\) 4) Từ điểm M nằm trên cung lớn BC, kẽ tiếp tuyến thứ 3 với đường tròn tâm O, tiếp tuyến này cắt AB, AC theo thứ tự tại D và E. Biết AD = 7cm, AE = 25cm, DE= 24cm. Tính độ dài các đoạn thẳng AB và BC.
Bài 3: (3,5 điểm) Cho đường tròn (O), đường kính AB bằng 2R. Qua A và B lần lượt
kẻ 2 tiếp tuyền d và d' với đường tròn. Từ một điểm M trên đường thẳng d vẽ tia MO
cắt đường thẳng d' ở P. Từ O vẽ một tia vuông với MP và cắt đường thắng d' ở D
a) Chứng minh O là trung điểm của MP và tam giác MDP cân
b) Hạ OI 1 MD (I E MD). Chứng minh IE (O) và DM là tiếp tuyến của đường
tròn (0).
c) Chứng minh : Tích AM.BD không phụ thuộc vào vị trí của điểm M.
d) Tính diện tích của tứ giác AMDB theo R khi MO = 2R
Cho đường tròn (O;R) và một điểm A ở ngoài đường tròn. Kẻ tiếp tuyến AB với đường tròn (O) (B là tiếp điểm). Qua B kẻ BH vuông góc với OA cắt đường tròn tại C.
a, Giả sử R = 6 cm, OA = 10 cm. Tính độ dài OH và góc BAO (làm tròn đến độ)
b, Chứng minh rằng AC là tiếp tuyến của (O)
c, Vẽ đường kính BD của (O). Gọi K là hình chiếu của C trên BD. Chứng minh AC.CD = CK.AO
d, AD cắt CK tại I. Chứng minh rằng I là trung điểm của CK.
Cho đường tròn tâm O và điểm A nằm ngoài đường tròn .Kẻ 2 tiếp điểm AB,AC với đường tròn ( B,C là tiếp điểm ) .Trên cũng nhỏ BC lấy 1 điểm M rồi kẻ các đường vuông góc MI,MH ,MK xuống các cạnh BC, CA,AB .Gọi giao điểm của BM và IK là P ,giao điểm của CM và IH là Q .CM:
a)Tứ giác BIMK ,CIMH nội tiếp
b) MI^2 =MH . MK
c)Tứ giác IPMQ nội tiếp rồi suy ra PQ vuông góc với M
Cho (O;R) có đường kính AB vuông góc với dây cung MN tại H(Hnằm giữa O và B) trên tia MN lấy điểm C nằm ngoài đường tròn(O;R) sao cho đoạn thẳng AC cắt đường tròn (O;R) tại điểm K khác A,2 dây MN và BK cắt nhau ở E
a) Chứng minh AHEK là tứ giác nội tiếp
Cho đường tròn (O;R) đường kính AC. Trên đoạn thẳng OC lấy điểm B và vẽ đường tròn (O') có đường kính BC. Gọi M là trung điểm của AB, qua M kẻ đây cung vuông góc với AB cắt đường tròn (O) tại D và E. Nối CD cắt đường tròn (O') Tại i
a)Tứ giác DAEB là hình gì? vì sao?
b) Chứng minh MI=MD và MI là tiếp tuyến của (O')
c) Gọi H là hình chiếu của i trên BC. Chứng minh CH.MB=BH.MC