Bài 6: Tính chất hai tiếp tuyến cắt nhau

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Nguyễn Văn Dũng

Cho đường tròn (O) và điểm M nằm ngoài đường tròn. Từ M kẻ 2 tiếp tuyến MA,MB và AB cắt nhau tại I. Kẻ đường kính BC của đường tròn(O)

a) chứng minh M,A,O,B thuộc 1 đường tròn

b) chứng minh OI.OM= \(OA^2\)

c) Qua O vẽ đường thẳng vuông góc với MC tại E và cắt BA tại F. Chứng minh FC là tiếp tuyến của đường tròn (O)

Huỳnh Phạm Nhật Huy
5 tháng 1 2020 lúc 21:01

hình tự vẽ nha, đề thiếu chỗ AB cắt AO tại I. góc của mình hk có mũ hihi

a) Ta có : MAO=MBO=90o ( tính chất 2 tiếp tuyến cắt nhau)

=> A,B cùng thuộc đường tròn đường kính MO

=>M,A,O,B cùng thuộc 1 đường tròn

b)Ta có: OA=OB( A,B thuộc (O))

MA=MB(tính chất 2 t/t cắt nhau)

=> A đối xứng B qua MO

=>AB vuông góc với OM tại I(1)

Ta lại có: T/g MAO vuông tại A(2)

Từ (1)(2)=> AO2 =OI.OM( hệ thức lượng)

c)Ta có: OA=OC(A,C thuộc (O))

Mà: AO2 =OI.OM

=>OC2 =OI.OM(3)

Mặt khác: EMO=IFO (cùng phụ FOM)

=> SinEMO=SinIFO

<=> EO/OM=OI/OF

<=> EO.OF=OI.OM(4)

Từ (3)(4)=> OC2 =OE.OF

<=> OC/OE=OF/OC ; COF chung

=> tg OCF đồng dạng tg OEC (c.g.c)

=> OEC=OCF=90o

=> FC là tiếp tuyến của (O) ( C thuộc (O))

Khách vãng lai đã xóa
B.Thị Anh Thơ
6 tháng 1 2020 lúc 12:38

a. Vì MA,MB là tiếp tuyến của (O)

\(\rightarrow\widehat{MAO}=\widehat{MBO}=90^O\rightarrow M,A,O,B\) cùng thuộc một đường tròn

b.Vì \(MA,MB\) là tiếp tuyến \(\rightarrow OM\perp AB\)

\(OA\perp AM\rightarrow OA^2=OI.OM\)

c. Gọi \(CM\cap OF=D\)

\(\rightarrow\widehat{FDE}=90^O=\widehat{FAC}\rightarrow FADC\) nội tiếp

\(\widehat{MDO}=90^O\rightarrow M,A,D,O,B\) nội tiếp

\(\rightarrow\widehat{FCA}=\widehat{FDA}=\widehat{FBC}\rightarrow FC\) là tiếp tuyến của (O)

Hỏi đáp Toán

Khách vãng lai đã xóa

Các câu hỏi tương tự
Nam Phong Nguyễn
Xem chi tiết
Nguyễn Trần Tuấn Tú
Xem chi tiết
Phương Trần
Xem chi tiết
Cậu Bé Ngu Ngơ
Xem chi tiết
illumina
Xem chi tiết
Johnny
Xem chi tiết
Kayokea
Xem chi tiết
Ngọc Phương Phạm Thị
Xem chi tiết
Chi Ngo Phuong
Xem chi tiết