a: \(\widehat{AMO}=90^0\)
nên điểm M chuyển động trên đường tròn đường kính AO
b: Đường tròn (O') tiếp xúc trong với đường tròn (O)
a: \(\widehat{AMO}=90^0\)
nên điểm M chuyển động trên đường tròn đường kính AO
b: Đường tròn (O') tiếp xúc trong với đường tròn (O)
Cho đường tròn (O; R), điểm A nằm bên ngoài đường tròn (R < OA < 3R). Vẽ đường tròn (A; 2R)
a) Hai đường tròn (O) và (A) có vị trí tương đối như thế nào đối với nhau ?
b) Gọi B là một giao điểm của hai đường tròn trên. Vẽ đường kính BOC của đường tròn (O). Gọi D là giao điểm (khác C) của AC và đường tròn (O). Chứng minh rằng AD = DC ?
Cho hai đường tròn (O; 2cm) và (O'; 3cm). OO' = 6cm
a) Hai đường tròn (O), (O') có vị trí tương đối như thế nào đối với nhau ?
b) Vẽ đường tròn (O'; 1cm) rồi kẻ tiếp tuyến OA với đường tròn đó (A là tiếp điểm). Tia O'A cắt đường tròn (O';3cm) ở B. Kẻ bán kính OC của đường tròn (O) song song với O'B, B và C thuộc cùng một nửa mặt phẳng có bờ OO'. Chứng minh rằng BC là tiếp tuyến chung của hai đường tròn (O; 2cm) và (O'; 3cm)
c) Tính độ dài BC
d) Gọi I là giao điểm của BC và OO'. Tính độ dài IO ?
Cho đường tròn tâm O bán kính OA và đường tròn đường kính OA
a) Hãy xác định vị trí tương đối của hai đường tròn
b) Dây AD của đường tròn lớn cắt đường tròn nhỏ ở C. Chứng minh rằng AC = CD
Cho đường tròn tâm O, vẽ tia Ox cố định và lấy A di chuyển trên tia đó.Dựng BC là tiếp tuyến chung ngoài của(O) và (A,AO) với B, C là các tiếp điểm (B∈(O), C∈(A)).Chứng minh rằng C nằm trên đường thẳng cố định khi A di chuyển.
Em cảm ơn!
Cho I là trung điểm của đoạn thẳng AB. Vẽ các đường tròn (I; IA) và (B; BA)
a) Hai đường tròn (I) và (B) nói trên có vị trí tương đối như thế nào đối với nhau ? Vì sao ?
b) Kẻ một đường thẳng đi qua A, cắt các đường tròn (I) và (B) theo thứ tự tại M và N. So sánh các độ dài AM và MN ?
Cho hai đường tròn (O; 3cm) và (O'; 4cm) có OO' = 5cm
a) Hai đường tròn (O) và (O') có vị trí tương đối nào ?
b) Tính độ dài dây chung của hai đường tròn ?
Cho hai đường tròn đồng tâm O. Một đường tròn (O') cắt một đường tròn tâm O tại A, B và cắt đường tròn tâm O còn lại tại C, D.
Chứng minh rằng AB // CD ?
Cho hai đường tròn (O) và (O') tiếp xúc ngoài tại A. Kẻ tiếp tuyến chung ngoài MN với M thuộc (O) và N thuộc (O'). Gọi P là điểm đối xứng với M qua OO', Q là điểm đối xứng với N qua OO'. Chứng minh rằng :
a) MNQP là hình thang cân
b) PQ là tiếp tuyến chung cả hai đường tròn (O) và (O')
c) MN + PQ = MP + NQ
Cho tam giác ABC cân tại A nội Tiếp đường tròn tâm O. Gọi D và H lần lượt là trung điểm các cạnh AC, BC. tiếp tuyến của đường tròn tâm O tại điểm A cắt tia BD tại E tia CE cắt đường tròn tâm O tại điewmr thứ hai là Fa/ chứng minh đường thang BC song song với đường thẳng AEb/ chứng minh tứ giác ABCE Là hình bình hànhc/ chứng minh bốn điểm O, H, C, D, cùng thuôc một đường trotròn