Cho đường tròn (O) và 2 dây AB,AC sao cho AB<AC và O nằm trong góc BAC. Gọi M, N lần lượt là điểm chính giữa \(\stackrel\frown{AB}\) và \(\stackrel\frown{AC}\) .
MN cắt dây AB ở H, BN cắt CM tại K
a) C/m : tam giác NCK cân và Tam giác AMK cân
b) C/m : tứ giác BMHK nội tiếp
c) C/m : HK // AC và so sánh góc BAK và góc CAK
Cho đường tròn (O), đường kính AB cố định. Điểm I nằm giữa A và O sao cho AI = AO. Kẻ dây MN vuông góc với AB tại I. Gọi C là một điểm tùy ý thuộc cung lớn MN sao cho C không trùng với M, N và B. Nối AC cắt MN tại E.
a, C/m: Tứ giác IECB nội tiếp được trong một đường tròn. Xác định tâm đường tròn này.
b, C/m: ΔAME ∼ ΔACM
Cho tam giác ABC nội tiếp đường tròn (O) . Hai đường cao BD,CE cắt nhau tại H Và cắt đường tròn lần lượt ở M và N.
Cm: a, Tam giác AMN cân.
b, H và M đối xứng M qua AC và H đối xứng N qua AB.
c, OA vuông góc với DE
Cho tam giác ABC nhọn (AB bé hơn AC) nội tiếp (0). Vẽ bán kính OD vuông góc với dây BC tại I. Tiếp tuyến (O) tại C và cắt D tại M A)cmr : tứ giác ODMC nội tiếp B)cm: góc BAD bằng DCM C) tia CM cắt tia AD tại K , tia AB cắt tia CD tại E . Cm EK// DM
CẦN GẤP CÂU C NHÉ!!!
cho ΔABC có 3 góc nhọn (AB < AC) nội tiếp (O) .Hai đường cao BE,CF cắt nhau tại H
a, cm : tg AEHF nội tiếp được và Δ AEF đồng dạng Δ ABC
b, Đường phân giác góc FHB cắt AB,AB tại M,N
cm : \(\dfrac{MF}{MB}=\dfrac{NE}{NC}\)
c, Gọi I là trung điểm của MN
cm: Δ IEF cân tại I
GIÚP MÌNH NHA MIK ĐANG GẤP
Cho tam giác nhọn ABC (AB < AC) nội tiếp đường tròn (O). Các đường cao BE, CF cắt nhau tại H. Gọi G là giao điểm của EF, BC. Đường thẳng đi qua A và vuông góc với GH tại I cắt BC tại M. Các tiếp tuyến với (O) tại B,C cắt nhau tại S.
a) Chứng minh tứ giác GFIC nội tiếp.
b) Chứng minh M là trung điểm của BC và tam giác AEM đồng dạng với tam giác ABS.
: Cho tam giác ABC nhọn (AB < AC) nội tiếp (O), đường cao AD. Biết AD cắt (O) tại điểm thứ hai M, vé ME vuông góc với AC ( E thuộc AC), đường thẳng ED cắt Ab tại I.
1) C/m tứ giác MDEC nôi tiếp.
2) C/m MI vuông góc với AB
3) c/m AB. AI = AE. AC
4) Gọi N là điểm đối xứng của M qua AB, F là điểm đối xứng của M qua AC, NF cắt AD tại H.
a) C/m AM là phân giác của
b) H là trực tâm của tam giác ABC.
Cho đường tròn tâm O .Kẻ đường kính AB và CD vuông góc với nhau . Gọi E là điểm chính giữa cung nhỏ CD .EA cắt CD tại F ;ED cắt AB tại M
a/ Các tam giác CEF và EMB là những tam giác gì ?
b/ chứng minh bốn điểm D , C, M ,B thuộc đường tròn tâm E .
cho tam giác ABC có ba góc nhọn (AB∠AC) nội tiếp đường tròn (o) vẽ tiếp tuyến tại A của đường tròn(o) cắt đường thẳng BC tại S tia phân giác của góc BAC cắt BC tại K và cắt đường tròn (o) tại E ,OE cắt dây BC tại I a/ chứng minh:SA2 =SB*SC b/chứng minh:OE⊥BC tại I d/vẽ tiếp tuyến SD của đường tròn (o) D là tiếp điểm D khác A . chứng minh:tứ giác SAOD nội tiếp được đường tròn và I