Cho (O;R) và (I;r) tiếp xúc ngoài tại A (R > r). Dựng tiếp tuyến chung ngoài BC (B nằm trên đường tròn tâm O và C nằm trên đường tròn tâm (I). Tiếp tuyến BC cắt tiếp tuyến tại A của hai đường tròn ở E
1. Chứng minh tam giác ABC vuông ở A
2. OE cắt AB ở N; IE cắt AC tại F. Chứng minh N;E;F;A cùng nằm trên một đường tròn
3. Chứng tỏ BC2= 4Rr
4. Tính tích tứ giác giác BCIO theo R;r
Cho (O;R) và (I;r) tiếp xúc ngoài tại A (R > r). Dựng tiếp tuyến chung ngoài BC (B nằm trên đường tròn tâm O và C nằm trên đường tròn tâm (I). Tiếp tuyến BC cắt tiếp tuyến tại A của hai đường tròn ở E
1. Chứng minh tam giác ABC vuông ở A
2. OE cắt AB ở N; IE cắt AC tại F. Chứng minh N;E;F;A cùng nằm trên một đường tròn
3. Chứng tỏ BC2= 4Rr
4. Tính tích tứ giác giác BCIO theo R;r
cho đường tròn (O;R) và đường thẳng (d) không đi qua tâm (O) cắt đường tròn (O;R) tại hai điểm phân biệt A,B. điểm M trên (d) và namè ngoài đường tròn (O;R) ,qua M kẽ hai tiếp tuyến MN và MP tới đường tròn (O;R) (P;N là hai tiếp tuyến) a) chứng minh: tứ giác MNOP nội tiếp được đường tròn b) chứng minh: MA×MB=MN^2
cho đường tròn o r và điểm m nằm ngoài đường tròn .qua m kẻ hai tiếp tuyến ma,mb với đường tròn (0,r) (a,b là tiếp điểm ) đoạn thẳng om cắt đường thẳng ab tại điểm h và cắt đường tròn (0,r) tại I 1, chứng minh M,A,B,O cùng thuộc một đường tròn 2,kẻ đường kính A,B của đường tròn (O,R) Đoạn thẳng MD cắt đường tròn (O,R) tại C khác D chứng minh MA² =MH.MO=MC.MD
Cho đường tròn tâm O bán kính R và 1 điểm A nằm ngoài đường tròn sao cho OA = 2R . Vẽ 2 tiếp tuyến AB, AC ( B, C là các tiếp điểm ) Đường thẳng OA cắt BC tại H. Cắt cung nhỏ và cung lớn BC lần lượt tại M và N.
a) Chứng minh R2 = OA . HM
b) Vẽ cát tuyến bất kì ADE. Gọi K là điểm DE. Chứng tỏ 5 điểm A, B, O, K ,C cùng thuộc 1 đường tròn. Xác định tâm và bán kính của đường tròn đó .
c) Chứng minh AM . AN = AH . AO
Cho đường tròn (O; R) và một điểm A cố định trên đường tròn đó. Qua A vẽ tiếp tuyến xy. Từ một điểm M trên xy vẽ tiếp tuyến MB với đường tròn (O). Hai đường cao AD và BE của tam giác MAB cắt nhau tại H.
a) Chứng minh rằng ba điểm M, H, O thẳng hàng.
b) Chứng minh rằng tứ giác AOBH là hình thoi.
c) Khi điểm M di động trên xy thì điểm H di động trên đường nào?
Câu hỏi : cho (O;R) từ điểm A ngoài đường tròn sao cho OA=2R. Kẻ các tiếp tuyến AB, AC với đường tròn (B, C là tiếp điểm) A) Tam giác ABC là tam giác vuông ? Vì sao? B) chứng minh OH×OA=R^2 C) qua A kẻ đường thẳng cắt đường tròn lần lượt tại M và N(M nằm giữa A và N), xác định vị trí của AMN để AM+AN đạt giá trị nhỏ nhất. Cảm ơn rất nhiều
Bài 7. (3 điểm) Cho hai đường tròn (O;R) và (O';r) tiếp xúc ngoài tại A. Tiếp tuyến chung ngoài MN cắt tiếp tuyến chung trong tại K (M, N là 2 tiếp điểm; M ∈ (O) và N ∈ (O')). a) Chứng minh AK = MK và △AMN là tam giác vuông. b) MA cắt (O') tại B, NA cắt (O) tại C. Chứng minh SAMN = SABC. c) Chứng minh BK và ON cắt nhau tại một điểm nằm trên (O').
Từ điểm M nằm ngoài đường tròn(O;R) sao cho OM =2R. Kẻ hai tiếp tuyến MA,MB với đường tròn(O;R) (A,B là các tiếp điểm). Đoạn thảng MO cắt đường tròn (O;R)tại P và cắt AB tại H. Tia AO cắt đường tròn (O;R) tại D và cắt tia MB tại K. Nối PK cắt BD tại G
a)CM 4 điểm M,A,O,B cùng nằm trên đường tròn
b) CM MO//BD
c) CM OG vuông góc với BD
d)Từ trung điểm I của AH vẽ đường thẳng vuông góc với AO cắt đường tròn (O;R) tại Q và J. CM MO là tiếp tuyến của (A;AQ)