Cho đường tròn (O ; R), 2 đường kính AB và CD vuông góc với nhau. Trên cung nhỏ DB, lấy điểm N (N khác B và D). Gọi M là giao điểm của CN và AB.
a. Chứng minh tứ giác ODNM nội tiếp được một đường tròn.
b. Chứng minh rằng \(AN.MB=AC.MN\)
c. Biết \(DN=R\) và AN cắt CD tại E, hãy tính ED và EC theo R.
Cho đường tròn tâm O bán kính r có hai đường kính AB và CD vuông góc với nhau M là một điểm di chuyển trên cung nhỏ AC AD đường thẳng cm cắt AB tại E A Chứng minh 4 điểm E ,M ,D ,O thẳng hàng B Chứng minh AE x BM = AM x AB
cho đường tròn (O;R) đường kính AB. Trên đường tròn (O) lấy hai điểm C và D nằm khác phía AB sao cho AC=AD. Trên cung nhỏ BC lấy điểm M (M khác B,C). Gọi I,K lần lượt là giao điển của CD với AB và AM chứng minh tứ giác IKMB nội tiếp
Cho nửa đường tròn tâm (O), đường kính AB = 2R và điểm M nằm trên đường tròn sao cho AM = R. N là điểm nằm trên cung MB ( N khác M và B). Gọi I là giao điểm của AN và MB. H là hình chiếu vuông góc của A trên AB. Gọi K là giao điểm của AM và BN. C/m: HK là tia phân giác của góc MHN.
Cho nửa đường tròn (O) đường kính AB. Gọi C là điểm cố định thuộc đoạn thẳng OB (C khác O và B). Dựng đường thẳng d vuông góc với AB tại điểm C, cắt nửa đường tròn (O) tại điểm M. Trên cung nhỏ MB lấy điểm N bất kỳ (N khác M và B), tia AN cắt đường thẳng d tại điểm F, tia BN cắt đường thẳng d tại điểm E. Đường thẳng AE cắt nửa đường tròn (O) tại điểm D (D khác A).
a) Chứng minh tứ giác BCFN nội tiếp được một đường tròn.
b) Chứng minh: AD.AE = AC.AB.
Cho đường tròn(O;R) có hai đường kính AB và CD vuông góc với nhau.Trên đoạn thẳng AB lấy một điểm M(khác O).Đường thẳng CM cắt đường tròn (O) tại điểm thứ hai N.Đường thẳng vuông góc với AB tại M cắt tiếp tuyến tại N của đường tròn (O) ở điểm P.Chứng minh rằng:
a)Tứ giác OMNP nội tiếp được
b)Tứ giác CMPO là hình bình hành
c)Tích CM.CN không phụ thuộc vào vị trí của điểm M trên đoạn thẳng AB
Cho đường tròn tâm O đường kính AB. Kẻ dây cung CD vuông góc với AB tại H( H nắm giữa A và O, H khác A và O). Lấy điểm G thuộc đoạn CH, tia AG cắt đường tròn tại E khác A
a. CM tứ giác BEGH nội tiếp
b. Gọi K là giao điểm của 2 đường thẳng BE và CD. CM: KC.KD=KE.KB
c. Đoạn thẳng AK cắt đường tròn tâm O tại F khác A. CM: G là tâm đường tròn nội tiếp tam giác HEF
d. Gọi M,N lần lượt là hình chiếu vuông góc của A và B trên đường thẳng EF. CM: HE+HF=MN
Cho đtròn tâm O có bán kính R. Vẽ hai đường kính AC và BD vuông góc với nhau. Lấy điểm M là trung điểm của OB. Tia AM cắt đtròn tại E (E khác A).
a) C/m OMEC nội tiếp.
b)Tính AM.AE+CD\(^2\) theo R.
c)Gọi N là trung điểm của CD. C/m MN//CE.
d)Tính diện tích tam giác ANE theo R.
Cho đường tròn tâm O với dây AB cố định (AB không qua O) đường kính CD vuông góc với AB tại K( C thuộc cung lớn AB). Điểm N thuộc cung nhỏ AC. Nối CN cắt AB tại M, nối ND cắt AB tại E. Gọi H là trung điểm NC, kẻ HI vuông góc AN tại I.
1. Chứng minh CNEK là tứ giác nội tiếp
2. Chứng minh MN.MC=MA.MB
3. Cho N di chuyển trên cung nhỏ AC, CM IH đi qua 1 điểm cố định và I thuojc một đường tròn cố định