Cho đường tròn (O) đường kính AB cố định. Từ điểm C bất kỳ trên đoạn OA vẽ dây MN vuông góc với AB. Lấy điểm D thuộc cung AM nhỏ; BD cắt MN tại E; AD cắt tia NM tại F. a) Chứng minh : tứ giác ADEC nội tiếp. b) Chứng minh: CA.CB = CE.CF c) Tia AE cắt đường tròn ngoại tiếp tam giác DEF tại điểm I. Chứng minh I nằm trên đường tròn O. d) Xác định vị trí của điểm C trên OA sao cho chu vi tam giác OCN lớn nhất
Cho hai đường tròn (O) và (O') cắt nhau tại A và B. Trên tia đối của tia AB lấy điểm M. Qua M kẻ đường thẳng (d) cắt (O) tại C và D (C nằm giữa M và D), đường thẳng (d') cắt (O') tại E và F (E nằm giữa F và M). Chứng minh CDFE là tứ giác nội tiếp
cho nửa đường tròn (o) đường kính AB, điểm C thuộc nửa đường tròn ( AC > BC). Gọi D là một điểm trên bán kính OA, qua D kẻ đường vuông góc với AB cắt AC và BC lần lượt tại E và F. Tiếp tuyến của nửa đường tròn tại C cắt È ở I. Chứng minh
a) Tứ giác BDEC và ADCF là các tứ giác nội tiếp được đường tròn.
b) I là trung điểm của EF
c) AE.EC = DE.EF
Trên đường tròn tâm O có một cung AB và S là điểm chính giữa của cung đó. Trên dây AB lấy hai điểm E và H. Các đường thẳng SH và SE cắt đường tròn theo thứ tự tại C và D. Chứng minh EHCD là một tứ giác nội tiếp ?
Cho đường tròn (O) đường kính AB. Gọi F là điểm nằm giữa O và A. Kẻ dây CD vuôn góc với AB tại F. Trên cung nhỏ BC lấy điểm M, nối A với M cắt CD tại E. 1) Chứng minh tứ giác EFBM nội tiếp. 2) Chứng minh MA là phân giác của góc CMD và AC = AE.AM. 3) Gọi giao điểm của CB với AM là N, MD với AB là I. Chứng minh N là tâm đường tròn nội tiếp ACIM
Cho nữa đường tròn (O;R) đường kính AB. Lấy điểm C là điểm chính giữa của cung AB, N là trung điểm của dây cung CB. Đường thẳng AN cắt nữa đường tròn (O) tại M. Từ C kẻ CI vuông góc với AM tại I.
a) Chứng minh tứ giác ACIO nội tiếp.
b) Chứng minh góc MOI = góc CAI.
c) Tính bán kính đường tròn ngoại tiếp tam giác IOM theo R.
Cho đường tròn (O) một cung AB và S là điểm chính giữa cung đó. Trên dây AB lấy hai điểm E và H. Các đường thẳng SH, SE gặp đường tròn tại C và D. Chứng minh EHCD là tứ giác nội tiếp.
Cho đường tròn (O), dây AB. Các tiếp tuyến của đường tròn tại A và B cắt nha tại C. Trên dây AB lấy điểm E(EA>EB). Đường vuông góc với OE tại E cắt CA và CB theo thứ tự ở I và K. Chứng minh rằng
1) OAEI, OEBK là các tứ giác nội tiếp 3) AI = BK
2) OIK là tam giác cân 4) OICK là tứ giác nội tiếp
Cho đường tròn (O) đường kính AB. Gọi H là điểm nằm giữa O và B. Kể dây CD vuông góc AB tại H. Trên cung nhỏ AC lấy điểm E. Kẻ CK vuông góc AE tại K. Đường thẳng DE cắt CK tại F.
a) T/g AHCK nội tiếp
b) AH.AB=AD^2
c) Tam giác ACF là tam giác cân
ai chỉ em câu b vs ạ