a) Tọa độ giao điểm của (C) và d là nghiệm của hệ phương trình:
\(\left\{{}\begin{matrix}x^2+y^2-x-7y=0\left(1\right)\\3x+4y-3=0\left(2\right)\end{matrix}\right.\)
Từ (2) => \(x=\dfrac{3-4y}{3}\) thay vào (1) ta được:
\(\left(\dfrac{3-4y}{3}\right)^2+y^2-\dfrac{3-4y}{3}-7y=0\)
<=> 16y2-24y+9+9y2-9+12y-63y=0
<=>25y2-75y=0
<=> y=0=>x=1
hoặc y=3=>x=-3
Gọi 2 giao điểm là M và N =>tọa độ M(1;0) và N(-3;3)
b) Viết lại phương trình (C): \(\left(x-\dfrac{1}{2}\right)^2+\left(y-\dfrac{7}{2}\right)^2=\dfrac{25}{2}\)
=>tọa độ tâm I(0,5;3,5)
Gọi d1,d2 là các tiếp tuyến tại M và N
VTPT của d1 là: \(\overrightarrow{IM}=\left(\dfrac{1}{2};-\dfrac{7}{2}\right)\) và M thuộc d1
=> phương trình d1: \(\dfrac{1}{2}\left(x-1\right)-\dfrac{7}{2}y=0\)
hay d1: x-7y-1=0
Bằng cách tính tương tự ta được phương trình tiếp tuyến d2:
d2:7x+y+18=0
c)Tọa độ giao điểm d1 và d2 là nghiệm của hệ:
\(\left\{{}\begin{matrix}x-7y-1=0\\7x+y+18=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-\dfrac{5}{2}\\y=-\dfrac{1}{2}\end{matrix}\right.\)
=>tọa độ giao điểm là (-2,5;-0,5)