§2. Phương trình đường tròn

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Sách Giáo Khoa

Cho đường tròn (C) : \(x^2+y^2-x-7y=0\) và đường thẳng d : \(3x+4y-3=0\)

a) Tìm tọa độ giao điểm của (C) và d

b) Lập phương trình tiếp tuyến với (C) tại các giao điểm đó

c) Tìm tọa độ giao điểm của hai tiếp tuyến

Xuân Tuấn Trịnh
26 tháng 4 2017 lúc 18:22

M N d d d1 d2 I

a) Tọa độ giao điểm của (C) và d là nghiệm của hệ phương trình:

\(\left\{{}\begin{matrix}x^2+y^2-x-7y=0\left(1\right)\\3x+4y-3=0\left(2\right)\end{matrix}\right.\)

Từ (2) => \(x=\dfrac{3-4y}{3}\) thay vào (1) ta được:

\(\left(\dfrac{3-4y}{3}\right)^2+y^2-\dfrac{3-4y}{3}-7y=0\)

<=> 16y2-24y+9+9y2-9+12y-63y=0

<=>25y2-75y=0

<=> y=0=>x=1

hoặc y=3=>x=-3

Gọi 2 giao điểm là M và N =>tọa độ M(1;0) và N(-3;3)

b) Viết lại phương trình (C): \(\left(x-\dfrac{1}{2}\right)^2+\left(y-\dfrac{7}{2}\right)^2=\dfrac{25}{2}\)

=>tọa độ tâm I(0,5;3,5)

Gọi d1,d2 là các tiếp tuyến tại M và N

VTPT của d1 là: \(\overrightarrow{IM}=\left(\dfrac{1}{2};-\dfrac{7}{2}\right)\) và M thuộc d1

=> phương trình d1: \(\dfrac{1}{2}\left(x-1\right)-\dfrac{7}{2}y=0\)

hay d1: x-7y-1=0

Bằng cách tính tương tự ta được phương trình tiếp tuyến d2:

d2:7x+y+18=0

c)Tọa độ giao điểm d1 và d2 là nghiệm của hệ:

\(\left\{{}\begin{matrix}x-7y-1=0\\7x+y+18=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-\dfrac{5}{2}\\y=-\dfrac{1}{2}\end{matrix}\right.\)

=>tọa độ giao điểm là (-2,5;-0,5)


Các câu hỏi tương tự
Tấn Đạt
Xem chi tiết
Nguyên Nguyên
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết
Trần Thị Hoài Nhung
Xem chi tiết
Hoài Trung
Xem chi tiết
bob kingston
Xem chi tiết
Rosie
Xem chi tiết
Thanh Linh
Xem chi tiết
Mạnh Hùng Trần
Xem chi tiết