Xét (O) có
ΔABC nội tiếp đường tròn
BC là đường kính
Do đó: ΔABC vuông tại A
Xét (O) có
ΔABC nội tiếp đường tròn
BC là đường kính
Do đó: ΔABC vuông tại A
Cho tam giác ABC vuông tại A,có M là trung điểm của BC. a) chứng minh các điểm A,B,C cùng nằm trên đường tròn M b) biết AB =6cm,BC=8cm.Tính bán kính đường
Xét tính đúng - sai của mỗi khẳng định sau :
Cho tam giác ABC nội tiếp đường tròn (O)
a) Nếu BC là đường kính của đường tròn thì \(\widehat{BAC}=90^0\)
b) Nếu AB = AC thì AO vuông góc với BC
c) Nếu tam giác ABC không vuông thì điểm O nằm bên trong tam giác đó
1. Cho tam giác ABC, góc A = 90 độ, có AB = 5 cm, AC = 12 cm. Tính bán kính đường tròn ngoại tiếp tam giác ABC.
2. Cho hình thang cân ABCD (AD//BC). Biết AB = 12 cm, AC = 16 cm và BC = 20 cm. Chứng minh rằng bốn điểm A, B, C, D cùng thuộc một đường tròn. Tính bán kính của đường tròn đó.
Cho tam giác ABC nhọn vẽ đường tròn tâm O đường kính AC nó cắt cạnh AB ,BC theo thứ tự ở H và K
a)Chứng minh CH vuông góc AB, AK vuông góc AC
b) gọi I là giao điểm của AK và CH chứng minh BI vuông góc AC
Cho (O ; R ) dây BC khác đường kính . Hai tiếp tuyến của ( O ; R ) tại BC cắt nhau tại A . Kẻ đường kính CD ; kẻ BH vuông góc với CD tại H
a, CMR : 4 điểm A ; B ; O ; C cùng thuộc 1 đường tròn
b, Gọi K là giao điểm của AO và BC . CMR : AO vuông góc với BC
c , CMR : BC là tia phân giác của |ABH
d, gọi I là giao điểm của AD và BH ; E là giao điểm của BD và AC . CMR : IH = IB
Cho tam giác ABC nhọn vẽ đường tròn tâm O đường kính BC cắt tại AB và AC lần lượt tại D và E. Gọi H là giao điểm của BE và CD chứng minh H là trực tâm của tam giác ABC Từ đó suy ra AH vuông góc với BC
Cho tam giác ABC ( gócA=90 độ) , lấy một điểm H bất kì trên cạnh AC , kẻ HM vuông góc BC (M thuộc BC)
a) Chứng minh 4 điểm A,B,M,H cùng thuộc một đường tròn
b) Chứng minh BH>AM
cho tam giác ABC cân tại A, BC = 12 cm, đường cao AH=4cm.Tính bán kính đường tròn ngoại tiếp tam giác ABC