Cho x,y,a,b là những số thực thỏa mãn:
\(\dfrac{x^4}{a}+\dfrac{y^4}{b}=\dfrac{x^2+y^2}{a+b}\)và\(x^2+y^2=1\)
Chứng minh: \(\dfrac{x^{2006}}{a^{1003}}+\dfrac{y^{2006}}{b^{1003}}=-\dfrac{2}{\left(a+b\right)^{1003}}\)
bài 1
a\(\dfrac{x+3}{2x-2}-\dfrac{4}{x^2-1}.\dfrac{x+1}{2}\)
b\(\left(x^2-4\right)\left(\dfrac{1}{x+2}+\dfrac{1}{2-x}-1\right)\)
bài 2
cho hình bình hành ABCD có AD= 2AB góc a bằng 60 độ. Gợi E ,F là chung diểm của BC và AD
a/ chứng minh rằng tứ giác ABEF là hình thoi
b/ chứng minh rằng tứ giác BFDC là hình thang cân
c/ lấy điểm M đối xứng với điểm A qua B chứng minh tứ giác BMCD là hình chữ nhật
monh các bậc CAO NHÂN giải hộ mình với ạ
a. Cho x,y,z là 3 số khác 0 thỏa mãn \(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=0\)
Tính giá trị biểu thức A=\(\dfrac{\left(x+y\right)\left(y+z\right)\left(z+x\right)}{xyz}\)
b. Cho a,b,c là các số hữu tỉ khác nhau từng đôi một. Chứng minh rằng A=\(\dfrac{1}{\left(a-b\right)^2}+\dfrac{1}{\left(b-c\right)^2}+\dfrac{1}{\left(c-a\right)^2}\)
là bình phương của 1 số hữu tỉ
c. Tìm giá trị lớn nhất của biểu thức B=\(\dfrac{5x^2+4x-1}{x^2}\)
Tìm điều kiện của x để phân thức sau xác định;
a)\(\dfrac{\dfrac{1}{x-4}}{2x+2}\)
b)\(\dfrac{x^3+2x}{4x^2-25}\)
c)\(\dfrac{2x^2+2x}{8x^3+27}\)
d)\(\dfrac{2x+1}{\left(2x+2\right)\left(4y^2-9\right)}\)
Dùng định nghĩa hai phân thức bằng nhau chứng tỏ :
a) \(\dfrac{5y}{7}=\dfrac{20xy}{28x}\)
b) \(\dfrac{3x\left(x+5\right)}{2\left(x+5\right)}=\dfrac{3x}{2}\)
c) \(\dfrac{x+2}{x-1}=\dfrac{\left(x+2\right)\left(x+1\right)}{x^2-1}\)
d) \(\dfrac{x^2-x-2}{x+1}=\dfrac{x^2-3x+2}{x-1}\)
cho a,b,c là độ dài 3 cạnh của 1 tam giác và p là nửa chu vi của tam giác đó. xác đinh dạng của tam giác biết rằng: \(\dfrac{1}{p-a}+\dfrac{1}{p-b}+\dfrac{1}{p-c}=2\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\)
Trong mỗi trường hợp sau đây, hãy tìm hai đa thức P và Q thỏa mãn đẳng thức :
a) \(\dfrac{\left(x+2\right)P}{x-2}=\dfrac{\left(x-1\right)Q}{x^2-4}\)
b) \(\dfrac{\left(x+2\right)P}{x^2-1}=\dfrac{\left(x-2\right)Q}{x^2-2x+1}\)
cho P = \(\left(\dfrac{2x+1}{2x-1}-\dfrac{2x-1}{2x+1}\right):\dfrac{4x}{10x-5}\) với x khác + - \(\dfrac{1}{2}\)
a/ rút gọn A
b/ tính giác trị biểu thức khi |x| = 2
1. TÌm GTNN:
a, M=\(\dfrac{x^4+1}{\left(x^2+1\right)^2}\)
b, N=\(\dfrac{x^2}{-4y^2+20xy-29x^2}\)
2. Tìm GTNN và GTLN của biểu thức:
a,A=\(\dfrac{2x^2-2x+9}{x^2+2x+5}\)
b, B=\(\dfrac{4x^3}{x^2+1}\)
c, C=\(\dfrac{2\left(x^2+x+1\right)}{x^2+1}\)
d, D=\(\dfrac{x^2+xy+y^2}{x^2+y^2}\)với x khác 0