+) Xét \(2x+3y-1=0\) có:
\(\Rightarrow\left\{{}\begin{matrix}2x+1=0\\3y-2=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=\dfrac{-1}{2}\\y=\dfrac{2}{3}\end{matrix}\right.\)
+) Xét \(2x+3y-1\ne0\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{2x+1}{5}=\dfrac{3y-2}{7}=\dfrac{2x+3y-1}{12}=\dfrac{2x+3y-1}{6x}\)
\(\Rightarrow6x=12\Rightarrow x=2\)
\(\Rightarrow y=3\)
Vậy...
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có :
\(\dfrac{2x+1}{5}=\dfrac{3y-2}{7}=\dfrac{2x+1+3y-2}{5+7}=\dfrac{2x+3y-1}{12}=\dfrac{2x+3y-1}{6x}\)
\(\Rightarrow6x=12\Rightarrow x=2\)
Thay vào biểu thức, ta có:
\(2.2+\dfrac{1}{5}=\dfrac{3y-2}{7}\Rightarrow1=\dfrac{3y-2}{7}\Rightarrow3y-2=7\)
\(\Rightarrow3y=9\Rightarrow y=3\)
Vậy \(\left\{{}\begin{matrix}x=2\\y=3\end{matrix}\right.\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có
\(\dfrac{2x+1}{5}\)=\(\dfrac{3y-2}{7}\)=\(\dfrac{2x+3y-1}{6x}\)=\(\dfrac{2x+1+3y-2}{5+7}\)=\(\dfrac{2x+3y-1}{12}\)=
\(\dfrac{2x+3y-1}{6x}\)(1)
TH1: 2x+3y-1≠0
Từ (1) ⇒6x=12⇔x=2
Thầy x=2vào biểu thức trên ta có
\(\dfrac{2\cdot2+3y-1}{12}\)=\(\dfrac{3y-2}{7}\)⇔y=\(\dfrac{1}{5}\)
TH2: 2x+3y-1=0
⇒2x+1=0 và 3y-2=0
⇔x=\(\dfrac{-1}{2}\);y=\(\dfrac{2}{3}\)
Vậy (x;y)∈{(2;\(\dfrac{1}{5}\));(\(\dfrac{-1}{2}\);\(\dfrac{2}{3}\))}