- Vẽ hình ko chính xác cho lắm!
Giải
a/ Xét ΔABM và ΔACM ta có:
AB = AC (GT)
AM: cạnh chung
MB = MC (GT)
=> ΔABM = ΔACM (c - c - c)
=> \(\widehat{AMB}=\widehat{AMC}\)
Lại có: \(\widehat{AMB}\) + \(\widehat{AMC}\) = 1800 (kề bù)
=> \(\widehat{AMB}=\widehat{AMC}\) = 1800 : 2 = 900
=> AM ⊥ BC
d) Xét 2 \(\Delta\) \(ABM\) và \(NCM\) có:
\(AM=NM\left(gt\right)\)
\(\widehat{AMB}=\widehat{NMC}\) (vì 2 góc đối đỉnh)
\(BM=CM\) (như ở trên)
=> \(\Delta ABM=\Delta NCM\left(c-g-c\right)\)
=> \(\widehat{ABM}=\widehat{NCM}\) (2 góc tương ứng)
Mà 2 góc này nằm ở vị trí so le trong.
=> \(AB\) // \(CN.\)
Chúc bạn học tốt!