Bài 16: Cho ABC có AB = AC, gọi D là trung điểm của BC.
a) Chứng minh : ∆ADB = ∆ADC, từ đó suy ra AD là tia phân giác của \(\widehat{BAC}\)
b) Chứng minh : AD BC
c) Trên cạnh AB và cạnh AC lần lượt lấy hai điểm M, N sao cho AM = AN. Gọi K là giao điểm của AD và MN. Chứng minh MN // BC.
d) Gọi O là trung điểm của BM, trên tia đối của tia OD lấy điểm P sao cho OD =
OP. Chứng minh ba điểm M, N, P thẳng hàng.
Cho tam giác ABC có AB = AC gọi M trung điểm của BC và trên tia đối MA lấy điểm D sao cho MD = MA .
Tìm điều kiện của \(\Delta ABC\) sao cho \(\widehat{ADC}\)= 30 độ; BD⊥CD
Cíuuuuuuuu
Cho tam giác ABC có : AB=AC, M là trung điểm của BC, trên tia đối của tia MA lấy điểm D sao cho AM=MD
a/ Chứng minh ABM=DCM
b/ Chứng minh AB // DC
c/ Chứng minh AM vuông góc với BC
d/ Tìm điều kiện của tam giác ABC để ADC =30°.
e/ Trên tia đối của tia AC lấy H sao cho AC=AH.Chứng minh AD=BH
f /Chứng minh tam giác HBC vuông. (Chỉ cần làm câu e và f !)
Câu 1: Cho tam giác ABC vuông tại A , gọi O là trung điểm AC. Trên tia đối của tia OB lấy điểm D sao cho OB = OD .
a) CM: tam giác AOD = tam giác COB.
b) CM: AD = BC ; AD // BC
c) CM: AC vuông góc DC
d) biết góc ACB = 35o. Tính góc ADC
AC1/Cho ΔABC = ΔDEF. Tính chu vi mỗi Δ biết AB=4 cm, BC=6cm, DF=5cm
2/ Cho ΔABC có AB<AC. Trên ÁC lấy điểm D sao cho AD=AB. Gọi M là trug điểm BD
a/ C/m ΔABM=ΔADM
b/ C/m AM⊥BD
c/ Tia AM cắt BC tại K. C/m ΔABK=ΔADK
d/ Trên tia đối của tia BA lấy điểm F sao cho BF=DC. C/m 3 điểm F,K,C thẳng hàng.
3/ Cho ΔABC vuông tại A, góc B=60 độ. Trên tia BA lấy điểm E sao cho BE=BC. Vẽ BI là phân giác góc B, I thuộc AC
a/. C/m tam giác BEC đều
b/ IE= IC
c/ EI⊥BC
Cho tam giác ABC có 3 góc nhọn (AB < AC). Trên cạnh AC lấy điểm M sao cho AB = AM. Gọi AD là tia phân giác của (D thuộc BC).
a) Chứng minh: .
b) Chứng minh rằng: góc DBA = góc DMA.
c) Từ D kẻ DI vuông góc với AB, DK vuông góc với AC (I thuộc AB, K thuộc AC). Chứng minh: BI = KM.
d) Trên tia đối của tia AB lấy điểm P sao cho A là trung điểm PI. Chứng minh: AD//PK. giúp mik với mik cần gấp
Bài 8: Cho tam giác ABC, AB = AC. Trên cạnh AB lấy điểm D, trên cạnh AC lấy điểm E sao cho AD = AE. Gọi M là giao điểm của BE và CD. Chứng minh:
a) BE = CD
b) tam giác BMD = tam giác CME.
c) AM là tia phân giác của góc BAC.