Cho Δ ABC vuông tại A, biết AB = 9cm, AC = 12cm. Từ A kẻ đường cao AH xuống cạnh BC.
a) Chứng minh Δ ABC ∼ Δ HAC
b) Chứng minh \(AC^2=BC.HC\)
c) Tính HC, BH, AH.
Cho tam giác ABC vuông tại A, biết AB=9cm, AC= 12cm. Từ A kẻ đường cao AH xuống cạnh BC
a/ Chứng minh: \(\Delta ABC\sim\Delta HAC\)
b/ Chứng minh: \(AC^2=BC.HC\)
C/ Tính HC, BH và AH
cho hình chứ nhật ABCD có AB=8cm, BC=6cm. Vẽ đường cao AH của \(\Delta\)ADB
a) tính DB
b) chứng minh \(\Delta\)ADH ∼ \(\Delta\)ADB
c) chứng minh AD2 = DH.DB
d) chứng minh \(\Delta AHB\sim\Delta BCD\)
e) tính độ dài đoạn thẳng DH, AH
Bài 2
cho\(\Delta ABC\) vuông tại A, có AB=6cm, AC=8cm. Vẽ đường cao AH
a) tính BC
b) chứng minh \(\Delta ABC\sim\Delta AHB\)
c) chứng minh AB2 =BH.BC. Tính BH, HC
d) vẽ phân giác AD của góc A( D\(\in\)BC) .TÍnh DB
Cho tam giác ABC vuông tại A (AB < AC) có AH là đường cao
a) Chứng minh: ΔABC ∼ ΔHAC và CA2 = CH.CB
b) Trên tia đối của tia AB lấy điểm D sao cho ∠BCD = 900. Vẽ AK CD tại K. Chứng minh ΔCHK ∼ ΔCDB
c) Chứng minh CK/CD +CH/CB =1
Cho \(\Delta\)ABC vuông tại A có AB=12cm , AC=16cm . Vẽ đường cao AH
a) Chứng minh \(\Delta\)HBA \(\sim\) \(\Delta\)ABC
b) Tính BC,AH ?
c) Vẽ đường phân giác AD của tam giác ABC ( D thuộc BC ) . Trong \(\Delta\)ADB kẻ phân giác DE ( E\(\in\)AB ). Trong \(\Delta\)ADC kẻ phân giác DF ( F\(\in\)AC ). Chứng minh \(\dfrac{EA}{EB}\times\dfrac{DB}{DC}\times\dfrac{FC}{FA}=1\)
1.Cho ΔABC vuông ở A,có AB=6cm,AC=8cm.Vẽ đường cao AH.
a,Tính BC.
b,Chứng minh ΔABC∼ΔAHB
c,Chứng minh AB2=BH.BC.Tính BH,HC
d,Vẽ phân giác AD của A (D ϵ BC).Tính DB
Cho tam giác ABC vuông tại A, vẽ đường cao AH(H∈BC).
a)Chứng minh: ΔHBAᔕΔABC
b)Chứng minh:ΔHBAᔕΔHAC .Suy ra: AH2=BH.HC
c)Kẻ HD⊥AB và HE⊥AC (D∈AB,E∈AC). Chứng minh: ΔAEDᔕΔABC
d)Nếu AB.AC=4AD.AE thì ΔABC là tam giác gì?
Cho tam giác ABC vuông tại A, đường cao AH, AB = 6cm, AC = 8cm.
a) Tính AH, HB, HC
b) Gọi M là trung điểm của BC, D và E là hình chiếu của H trên AB, AC. Chứng minh AD.AB = AE.AC. Từ đó suy ra \(\Delta AED\) đồng dạng \(\Delta ABC\)
c) Chứng minh \(DE\perp AM\)
Cho tam giác ABC vuông tại A(AB<AC), vẽ đường cao AH (H thuộc BC). GỌi D là điểm đối xứng với B qua H.
a) Chứng minh ΔABC đồng dạng ΔHBA.
b)Từ C kẽ đường thẳng vuông góc với tia AD; cắt tia AD tại E. Chứng minh rằng : AH>CD=CE>AD.
c) Chứng minh ΔABC đồng dạng ΔEDC và tính diện tích ΔEDC biết AB=6cm, AC=8cm.
d)Biết AH cắt CE tại F. Tia FD cắt cạnh AC tại K. Chứng minh KD là tia phân giác của góc HKE.