a: Xét (I) có
ΔEKC nội tiếp
EC là đường kính
Do đó; ΔEKC vuông tại K
=>KE vuông góc với AC
=>KE//AB
b: góc IKH=góc IKE+góc HKE
=góc IEK+góc HAE
=góc IBA+góc HAE=90 độ
=>HK là tiếp tuyến của (I)
a: Xét (I) có
ΔEKC nội tiếp
EC là đường kính
Do đó; ΔEKC vuông tại K
=>KE vuông góc với AC
=>KE//AB
b: góc IKH=góc IKE+góc HKE
=góc IEK+góc HAE
=góc IBA+góc HAE=90 độ
=>HK là tiếp tuyến của (I)
Cho (O,R) đường kính AB, dây AC không đi qua tâm. Gọi H là trung điểm AC
a, Chứng minh OH//BC
b,Tiếp tuyến tại C (O) cắt OH tại M. Chứng minh MA là tiếp tuyến của đường tròn tâm O
c, Vẽ CK vuông góc với AB tại K. GỌi I là trung điểm của CK, đặt góc BAC = góc anfa. Chứng minh IK=R.sin anfa. cos anfa
d, Chứng minh 3 điểm M,I,B thẳng hàng
Ai giúp mình ý d vs ạ !
Cho đường tròn tâm O đường kính AB. Lấy điểm C nằm trên đường tròn sao cho số đo cung AC gấp đôi số đo cung CB. Tiếp tuyến tại B với đường tròn (O) cắt AC tại E. Gọi I là trung điểm của dây AC. a) Chứng minh rằng tứ giác IOBE nội tiếp b) Chứng minh EB→ = EC . EA c) Biết bán kính đường tròn (O) bằng 2cm, tính diện tích tam giác ABE. Giải giúp em với ạ
Cho tam giác nhọn ABC (AB < AC) nội tiếp đường tròn (O). Các đường cao BE, CF cắt nhau tại H. Gọi G là giao điểm của EF, BC. Đường thẳng đi qua A và vuông góc với GH tại I cắt BC tại M. Các tiếp tuyến với (O) tại B,C cắt nhau tại S.
a) Chứng minh tứ giác GFIC nội tiếp.
b) Chứng minh M là trung điểm của BC và tam giác AEM đồng dạng với tam giác ABS.
Cho đường tròn tâm O đường kính AB. Lấy điểm C nằm trên đường tròn sao cho số đo cung AC gấp đôi số đo cung BC. Tiếp tuyến tại B với đường tròn tâm O cắt AC tại E. Gọi I là trung điểm của dây AC a) Chứng minh rằng tứ giác IOBE nội tiếp b) Chứng minh EB²=EC.EA c) Biết bán kính đường tròn tâm O bằng 2cm, tính diện tích tam giác ABE Vẽ hình và giải giúp e với ạ
Cho tam giác ABC nội tiếp đường tròn (O) . Hai đường cao BD,CE cắt nhau tại H Và cắt đường tròn lần lượt ở M và N.
Cm: a, Tam giác AMN cân.
b, H và M đối xứng M qua AC và H đối xứng N qua AB.
c, OA vuông góc với DE
cho tam giác ABC vuông tại A, đường cao AH. Biết AB=12cm;AC=16cm. Vẽ đường tròn tâm B bán kính AB. Đường tròn tâm B cắt BC tại D và E (E nằm giữa B và C) và cắt AH tại K (K khác A). Vẽ đường kính AN của đường tròn tâm B. a)Tính AH, BH, CH b)Chứng minh CK là tiếp tuyến đường tròn tâm B c)Đường thẳng NC cắt đường tròn tâm B tại M. Chứng minh CE.CD=CM.CN d)Tính \(\dfrac{S_{CMH}}{S_{CNB}}\) (tỉ số diện tích tam giác CMHvà tam giác CNB)
cho tam giác abc vuông tại a đường tròn tâm O đường kính AC cắt BC tại H a} c/minh ah vuông góc bc b} gọi m là trung điểmcủa ab . C/minh AM là tiếp tuyến của (O)
Đường tròn tâm (O) bán kính AB. Trên đường thẳng AB lấy điểm C sao cho B nằm giữa A,C. Kẻ tiếp tuyến CK với đường tròn (O) (K là tiếp điểm), tiếp tuyến tại A của đường tròn (O) cắt đường thẳng CK tại H. Gọi I là giao điểm OH và AK, J là giao điểm của BH với đường tròn (O) (J không trùng với B) a) Chứng minh AJ.HB = AH.AB b) Chứng minh 4 điểm B, O, I, J cùng nằm trên một đường tròn.
Cho đường tròn (O;R), đường kính AB, trên (O;R) lấy điểm C sao cho AC< BC. Tiếp tuyến tại B của (O) cắt AC tại D.
a) Chứng minh AD ⊥ BC từ đó chứng minh AC.AD=4R2
b) Gọi K là trung điểm BD, chứng minh KC là tiếp tuyến của (O;R).
Ai giúp mình với ạ. mình cảm ơn nhiều