Cho tam giác ABC vuông tại A có AC>AB. Đường cao AH. Từ H kẻ HD\(\perp\)AB (D\(\in\)AB), HE\(\perp\)AC( E\(\in\)AC).
a. Chứng minh: \(\Delta AED\sim\Delta ABC\)
b. Gọi M là điểm đối xứng của B qua H. Từ M kẻ đường thẳng vuông góc với BC cắt cạnh AC tại N. Chứng minh rằng DE song song với BN
d.Chứng minh rằng: \(\dfrac{AB^3}{AC^3}=\dfrac{BD}{CE}\)
---> Giúp minh với ạ, mai mình nộp rồiT.T
Cho ΔABC vuông tại A (AB < AC ), đường cao AH.
a) Cm: ΔBAC đồng dạng ΔBHA.
b) Kẻ HE ⊥ AB tại E, HE ⊥ AC tại F. Cm: AE. AB = AF. AC
c) Vẽ đường thẳng EF cắt BC tại M. Cm: MC. MB = ME. MF
Cho ΔABC vuông tại A. Trên các cạnh BC, AB,AC lần lượt lấy D,E,F sao cho DE ⊥ BC, DE = DF. Gọi M là trung điểm của EF. Cmr: \(\widehat{BCM}=\widehat{BFE}\)
cho ΔABC vuông tại A, kẻ BC⊥AH
a, CM ΔABH=ΔACH
b, vẽ trung tuyến BM. GỌI G là giao điểm của AH và BM
CM G là trọng tâm ΔABC
c, Cho AB=30cm, BH=18cm. Tính AG
d, từ h kẻ hd song song với ac d thuộc AB . CM A,G,H THẢNG HÀNG
Cho tam giác ABC vuông tại A có AH là đường cao. Vẽ HD ⊥ AB ( D ∈ AB ). HE ⊥ AC ( E ∈ AC ). AB = 12cm, AC = 16 cm
a) Chứng minh : ΔHAC ∼ ΔABC
b) Chứng minh : AH2 = AD.AB
c) Chứng minh : AD.AB = AE.AC.
d) Tính \(\dfrac{S_{ADE}}{S_{ABC}}\)
cho tam giác ABC vuông tại A. Từ một điểm D bất kì trên cạnh BC kẻ \(DE\perp AC\) tại E: \(DF\perp AB\) tại F
A) chứng mình rằng tứ giác AEDF là hình chữ nhật
B)trên tia đối của tia AB lấy điểm G sao cho AG=AF. Gọi H là giao điểm của AE vad DG. Chúng minh rằng FH là đường trung tuyến của tam giác FDG
ΔABC có 3 góc nhọn, các đường cao AD, BE, CF cắt nhau tại H.
a, CM: ΔAEB ∼ΔAFC⇒ AE. AC=AF. AB
b, CM : Δ AEF∼ ΔABC ∠AFE=∠ACB
c, CM: BF. BA= BH. BE=BD. BC
d, ∠BAH=∠BEF.∠ BED=∠BCH⇒ EH là tia phân giác của ∠DEF
e, Vẽ HQ ⊥ DF tại Q; HV ⊥ FE tại V. CM: QV song song AB
f, QV cắt AD tại I . CM:∠ BAD= ∠VIH=∠VEH
g, CM: ∠IVE= ∠IHE⇒ ΔKIE ∼ΔKVH ( K là giao điểm của EF và AH)
h, CM: DI⊥ IE
k, EI cắt DE tại S. CM: I là trung điểm của ES
Cho ΔABC nhọn (AB < AC). Hai đường cao AD và BE cắt nhau tại H. C/m:
a) CH ⊥ AB tại I
b) C/m: ΔABE đồng dạng ΔACI. Cho AB = 10 cm; AC = 15 cm; CI = 9 cm. Tính BE
c) ΔHEA đồng dạng ΔHDB
d) IH.EC = EH.IB
e) ΔAEI đồng dạng ΔABC
g) CE.CA = CD.CB
h) BH.AD = AC.BD (gợi ý: trung gian)
Cho tam giác vuông ABC, \(\widehat{A}=90^o\) với AB = 5 cm, BC = 13 Cm. Vẽ một tam giác vuông cân DAB với cạnh huyền AB thuộc tam giác ABC. E là trung điểm của cạnh BC. Tìm DE = ____?