a) tg AHB và tg AHC: AHB^ = AHC^ = 90o; AB = AC; AH chung
=> tg AHB = tg AHC (ch_cgv)
=> HB = HC (2 cạnh t/ứng) ; BAH^ = CAH^ (2 góc t/ứng)
b) BC= BH + HC = 2HC = 8 => HC = BC/2 = 4 (cm)
tg AHC: \(AH=\sqrt{AC^2-HC^2}=\sqrt{25-16}=3\left(cm\right)\)
c) tg ADH và tg AEH: ADH^ = AEH^ = 90o; AH chung; ADH^ = EAH^
=> tg ADH = tg AEH (ch_gn)
=> AD =AE (2 cạnh t/ứng)
Vậy tg DAE cân tại A (AD = AE)