Cho \(\Delta\) ABC vuông tại B, đường phân giác AD (D\(\in\) BC) , kẻ CK vuông góc với đường thẳng AD tại K.
a) Chứng minh \(\Delta\) BDA ~ \(\Delta\) KDC, từ đó suy ra \(\dfrac{BD}{DA}\) = \(\dfrac{DK}{DC}\)
b) Chứng minh \(\Delta\) DBK ~ \(\Delta\) DAC
c) Gọi I là giao điểm của AB và CK, chứng minh AB.AI + BC.DC = AC2
a, xet \(\Delta BDA\) va \(\Delta KDC\)
\(\widehat{ABD}=\widehat{DKC}=90^o\)
\(\widehat{ADB}=\widehat{KDC}\left(dd\right)\Rightarrow\Delta BDA\infty\Delta KDC\)
\(\Rightarrow\dfrac{BD}{DA}=\dfrac{DK}{DC}\)
b, xet \(\Delta DBK\) va \(\Delta DAC\)
\(\Rightarrow\dfrac{BD}{DA}=\dfrac{DK}{DC}\) , \(\widehat{BDK}=\widehat{ADC}\left(dd\right)\)
\(\Rightarrow\Delta DBK\infty\Delta DAC\left(cgc\right)\)
c, \(\Delta ABD\infty\Delta AKI\) ( \(\widehat{A}chung\);\(\widehat{ABD}=\widehat{AKI}=90\) )
\(\Rightarrow\widehat{ADB}=\widehat{AIK}\) hay \(\widehat{ADB}=\widehat{BIC}\)
xet \(\Delta ABD\) va \(\Delta CBI\)
\(\widehat{ADB}=\widehat{BIC}\) ; \(\widehat{ABD}=\widehat{CBI}=90\)
\(\Rightarrow\Delta ABD\infty\Delta CBI\left(gg\right)\)
\(\Rightarrow\dfrac{AB}{BD}=\dfrac{BC}{BI}\)
\(\Rightarrow AB.BI=BC.BD\)
\(\Rightarrow AB.\left(AI-AB\right)=BC.\left(BC-DC\right)\)
\(\Rightarrow AB.AI-AB^2=BC^2-BC.DC\)
\(\Rightarrow AB.AI+BC.DC=AC^2\)