a) Xét tứ giác AEBM có:
+ AD=DM(gt)
+ ED=DM( E đối xứng với M qua D)
Vậy tứ giác AEBM là hình bình hành(dấu hiệu 5) (1)
Xét \(\Delta ABC\) vuồng tại A có đường trung tuyến AM:\(\Rightarrow AM=BM=\frac{BC}{2}\) (2)
Từ (1) và (2)=> hình bình hành AEBM là hình thoi(dấu hiệu 2)
=> \(AB\perp EM\) ( tính chất hai đường chéo hình thoi AEBM)
lại có ED=DM( cmt)
Do đó: E đối xứng với M qua AB.
b) AEMC?
Vì AEBM là hình thoi:
=> AE//BM hay AE//MC (1)
Xét \(\Delta BAC\) có:+ AD=BD(gt)
+ AM=MC(gt)
Vậy DM là đường trung bình của \(\Delta BAC\)
=> DM//AC hay EM//AC (2)
Từ (1) và (2) => tứ giác AEBM là hình bình hành ( dấu hiệu 1)
cái C/M hình AEBM mk chứng minh ở câu a luôn rùi đó nha!!!!!!!!!!!
a) Ta có: E và M đối xứng với nhau qua D
=> DE = DM ; ME vuông góc AB
Ta có BD = DA ( D là trun điểm AB )
mà ME vuông góc AB ( cmt )
=> AB là trung trực của ME hay E và M đối xứng nhau qua D
b) Xét Tam giác ABC có:
M là trung điểm BC ( gt )
D là trung điểm AB ( gt)
=> DM là đường trung bình tam giác ABC
=> DM // AC; DM = 1/2AC
mà E thuộc DM
nên EM // AC
Xét tứ giác AEMC có:
EM // AC ( cmt)
EM = AC ( cùng = 2DM )
=> Tứ giác AEMC là hình bình hành( tứ giác có 2 cạnh đối vừa // vừa = nhau là hình bình hành)
Xét tứ giác AEBM có:
ED = DM ( gt )
DB = AD ( gt )
=> Tứ giác AEBM là hình bình hành
mà AB vuông góc EM
=> hbh AEBM là hình thoi
bạn đọc sai đỉnh ak xem hộ mk tứ giác AEMB hay là AEBM