Cho ΔABC vuông tại A có đường cao AH
a, CMR : BC = AH . cotB + AH . cotC
b, Kẻ HE ⊥ AB
CMR : BE = BC . cos3B
c, Kẻ HF ⊥ AC
CMR : ΔAEF ~ ΔACB
d, CMR : \(\frac{BE}{CF}=\frac{AB^3}{AC^3}\)
e, \(\sqrt{\frac{BE}{AE}}=\frac{BH}{AH}\)
f, AH3 = BC . HE . HF
g, BE\(\sqrt{CH}\) + CF\(\sqrt{BH}\)= AH\(\sqrt{BC}\)
h, \(\sqrt[3]{BE^3}+\sqrt[3]{CF^3}=\sqrt[3]{BC^2}\)
Cho ΔABC nội tiếp (O;R). Gọi S là diện tích ΔABC.Chứng minh rằng \(S\le\dfrac{3\sqrt{3}R^2}{4}\)
*Hướng dẫn : Chú ý: Với a,b,c,d không âm ta có:\(\dfrac{a+b+c+d}{4}\ge\sqrt[4]{abcd}\) dấu bằng xảy ra <=> a=b=c=d
Vẽ AH⊥BC tại H, OK⊥BC tại K. Đặt OK=x. Tính BC theo R và x. \(AH\le AK\le AO+OK\)
△ ABC, Â = 90o, AH ⊥ BC. HE ⊥ AB, HF ⊥ AC. Chứng minh:
1, AE. AB = AF. AC + AF. FC
2, BH. HC = AE. EB + AF. FC
3, \(\frac{AB^3}{AC^3}=\frac{BE}{CF}\)
4, AB + AC ≤ \(\sqrt{2}.BC\)
5, AB. AC ≥ \(\frac{BC^2}{4}\)
\(\Delta ABC\perp A\), AH là đường cao
Cho BH=a,HC=b
c/m \(\sqrt{ab}< \dfrac{a+b}{2}\)
cho \(S_n=\frac{\sqrt{3}+S_{n-1}}{1-\sqrt{3}S_{n-1}}\) với n ϵ N và n ≥ 2, biết \(S_n=1\)
Tính \(S=S_1+S_2+S_3+...+S_{2005}\)
Cho tam giác ABC có 3 góc nhọn với các đường cao AD,BE,CF cắt nhau tại H.
a, CMR: \(\Delta AEF\sim\Delta ABC\) ; \(\frac{S_{AEF}}{S_{ABC}}=\cos^2\alpha\)
b, CMR: \(S_{DEF}=\left(1-\cos^2A-\cos^2B-\cos^2C\right).S_{ABC}\)
c, Cho biết AH = k.HD. CMR: \(\tan B.\tan C=k+1\)
d, CMR: \(\frac{HA}{BC}+\frac{HB}{AC}+\frac{HC}{AB}\ge\sqrt{3}\)
1) Cho ΔABC trực tâm H là trung điểm đường cao AD
a) CMR: tanB.tanC = 2
b) Trung tuyến BM ⊥ trung tuyến CN tại G. CMR: cot B + cot C ≥ 2/3
2) Cho ΔABC , Â tù kẻ AH ⊥ BC, BH = 10cm , HC = 24cm
Cho góc ABC = 45° . Tính tỉ số lượng giác góc ACB
Cho ΔABC, Â = 90° , BC = 10cm , sin B = 1/2 . Tính tỉ số lượng giác góc C ?
CMR : SΔ = Cạnh.Cạnh.sin góc kẹp giữa
Cho ΔABC nhọn nội tiếp (O;R). Gọi x,y,z là khoảng cách từ O đến các cạnh BC = a; CA = b; AB = c của ΔABC. CM: \(\sqrt{x}+\sqrt{y}+\sqrt{z}\le3\sqrt{\frac{R}{2}}\)
1/ a) Cho sin α=1/5. Tính 4cos\(^2\alpha\)-6sin\(^2\alpha\)
b)Cho tg α+cotg α=3. Tính sin α.cos α
2/Cho ΔABC vuông tại A có BC=8cm,diện tích ΔABC là \(8\sqrt{3}cm^2\). Tính AB,AC,∠B,∠C
3/ Cho ΔABC vuông tại A có cos B=0,6
a) Tính sin B,tan B,cotg B
b) Tính sin C,tan C,cotg C
4/ Cho ΔABC vuông tại A có BC=10cm đường cao AH=\(\sqrt{21}\)cm. Tính ∠B,∠C
5/Cho ΔABC có AC=2a,∠C=30,BC=a\(\left(a\sqrt{3}+1\right)\). Tính AB,∠A,∠B
6/ Cho ΔABC. Cminh:
a) AB\(^2=AC^2+BC^2-2.AC.BC.cosC\)
b)\(AB^2=AB^2+BC^2-2.AB.BC.cosB\)
c)\(BC^2=AB^2+AC^2-2.AB.AC.cosA\)