Cho \(\Delta ABC\) , trên cạnh AB lấy điểm D , kẻ DE song song với BC ( \(E\in AC\) ) . Kẻ đường thẳng Cx song song vs AB , Cx cắt đường thẳng DE ở K . Gọi H là giao điểm của AC và BK
a , Chứng minh : \(\Delta ABC\sim\Delta CEK\)
b , Chứng minh ; BC . HE = HC . KE
c , Giả sử diện tích tam giác ABC là 36 \(cm^2\) ; AD = 2DB . Tính diện tích tam giác BHE
Hình vẽ:
~~~~
a/ vì: \(\left\{{}\begin{matrix}DE\left|\right|BC\\Cx\left|\right|AB\end{matrix}\right.\) (gt) => \(\left\{{}\begin{matrix}DK\left|\right|BC\\CK\left|\right|BD\end{matrix}\right.\)
=> DKCB là hbh
=> \(\widehat{ABC}=\widehat{CKE}\)
Có: \(\widehat{E_1}=\widehat{E_2}\) (đối đỉnh)
Mặt khác: \(\widehat{E_2}=\widehat{C_1}\) (đồng vị)
=> \(\widehat{C_1}=\widehat{E_1}\)
Xét ΔABC và ΔCEK có:
\(\widehat{ABC}=\widehat{CKE}\) (cmt)
\(\widehat{C_1}=\widehat{E_1}\left(cmt\right)\)
=> ΔABC ~ ΔCKE (g.g) (đpcm)
b/ Xét ΔBCH và ΔKEH có:
\(\widehat{BHC}=\widehat{KHE}\) (đối đỉnh)
\(\widehat{C_1}=\widehat{E_1}\) (đã cm)
=> ΔBCH ~ ΔKEH (g.g)
=> \(\dfrac{BC}{KE}=\dfrac{HC}{HE}\) => BC . HE = HC . KE (đpcm)
c/ 0 biet lam