Ta có \(\widehat{A^1}+\widehat{A^2}\) = 900
\(\widehat{B}+\widehat{C}=90^0\); \(\widehat{A^1}+\widehat{C}=90^0\)
=> \(\widehat{A^1}=\widehat{B}\) ; \(\widehat{A^2}=\widehat{C}\)
Xét Δ ABH và ΔCAH có: \(\widehat{A^1}=\widehat{B}\) ; \(\widehat{A^2}=\widehat{C}\)
=> Δ ABH ∼ ΔCAH (g.g)
=> \(\dfrac{BH}{AH}=\dfrac{AH}{CH}\) => AH2 = BH.CH = 9 . 16 = 144
=> AH = 12
=> AB = \(\sqrt{BH^2+AH^2}\) = 15
=> AC = \(\sqrt{CH^2+AH^2}\) = 20
=> BC = 9 + 16 = 25
=> AB = 15;AC = 20;BC = 25