\(\Delta ABC\) có \(\widehat{B}=\widehat{C}\)\(\Rightarrow\Delta ABC\) cân tại A
\(\widehat{ACE}=180^o-\widehat{C}\\ \widehat{ABF}=180^o-\widehat{B}\\ \widehat{B}=\widehat{C}\Rightarrow\widehat{ACE}=\widehat{ABF}\)
Xét \(\Delta ACE\) và \(\Delta ABF\):
\(AC=AB\left(gt\right)\\ \widehat{ACE}=\widehat{ABF}\left(cmt\right)\\ CE=BF\left(gt\right)\\ \Rightarrow\Delta ACE=\Delta ABF\)
\(BE=BC+CE\\ CF=CB+BF\\ CE=BF\left(gt\right)\Rightarrow BC+CE=CB+BF\Leftrightarrow BE=CF\)
Xét \(\Delta ABE\) và \(\Delta ACF\):
\(AB=AC\left(gt\right)\\ \widehat{B}=\widehat{C}\left(gt\right)\\ BE=CF\left(cmt\right)\\ \Rightarrow\Delta ABE=\Delta ACF\)