Cho ΔABC cố định, các điểm D và E di đoonhj trên các cạnh tương ứng là AB và AC sao cho \(\dfrac{AD}{DB}=\dfrac{CE}{EA}\)
CMR: Trung điểm M của đoạn thẳng DE nằm trên 1 đoạn thẳng cố định
Cho tam giác ABC (AB<AC) và đường phân giác AD. Điểm M và N lần lượt nằm trên các cạnh AB và AC sao cho BM=CN. Gọi O là giao điểm của BN và CM. Đường thẳng qua O song song với AD cắt BC ở I. CMR: BI=CD.
Cho ΔABC có AM là đường trung tuyến. N là điểm trên đoạn thẳng AM. Gọi D là giao điếm của CN và AB. Chứng minh: \(\dfrac{AD}{BD}=\dfrac{AE}{EC}\)
cho tam giác abc, điểm e trên cạnh ab sao cho ae=1/2 eb. điểm d trên cạnh ac sao cho ad=1/3 dc. k là giáo điểm của bd và ce. tính tỉ số ek/kc
Cho tam giác ABC có AB>AC, BE là phân giác, BD là trung tuyến (E,D thuộc cạnh AC). Đường thẳng qua C vuông góc với BE cắt BE, BD và BA lần lượt tại F, G và K. Gọi M là giao điểm của DF với BC. Chứng minh:
a)M là trung điểm của đoạn thẳng BC
b) DA/DE = 1+BK/DF
c)Đường thẳng GE song song với BC
Cíu với.
Cho đoạn thẳng AB thuộc đường thẳng d. Trên d lấy điểm C thuộc đoạn thẳng AB và điểm D nằm ngoài đoạn thẳng AB sao cho \(\dfrac{CA}{CB}\)=\(\dfrac{DA}{DB}\)=\(\dfrac{3}{5}\)
a. Tính \(\dfrac{AB}{AC}\)=\(\dfrac{AB}{CB}\)
b. Cho AB=24cm. Tính CA;DA
Cho \(\Delta\) ABC có ba góc nhọn, vẽ 3 đường cao AD, BE, CF ( D \(\in\) BC, E \(\in\) AC, F \(\in\) AB ) cắt nhau tại H.
a) C/m \(\Delta\)HAF \(\sim\) \(\Delta\) HCD
b) Gọi M, N, P lần lượt là trung điểm các đoạn thẳng HA, HB, HC. C/m \(\Delta MNP\sim\Delta ABC\) và tính diện tich của tam giác MNP theo diện tích của tam giác ABC.
Cho tam giác ABC (CA=CB), đường cao BD. Trên các cạnh BA,BC lấy tương ứng ở hai điểm E và F sao cho BE=BF=BD. Qua E kẻ đường thẳng song song với AC cắt BC ở N , cắt BC ở N, cắt BD ở K. Qua F kẻ đường thẳng song song với AC cắt AB ở M, cắt BD ở I. Tính độ dài các cạnh AB,BC nếu biết EM=9cm, FN=12cm và IK=6cm.
Cho tam giác ABC, M là điểm trên cạnh BC sao cho MB=2MC, N là điểm trên cạnh AC sao cho NA=2NC, G là giao điểm của AM và BN. Chứng minh:
a) MN//AB.
b) \(\dfrac{GA}{GM}=\dfrac{GB}{GN}=3\)