Cho tam giác ABC có diện tích 27cm2.Lấy các điểm M,N,P lần lượt trên các cạnh AB,BC,CA sao cho \(\dfrac{AM}{BM}=\dfrac{BN}{NC}=\dfrac{CP}{PA}=\dfrac{1}{2}\)
Tính diện tích tam giác MNP
Cho tam giacs ABC cos S = 27cm^2. Lấy các điểm M, N, P lần lượt trên các cạnh AB, BC, AC sao cho \(\dfrac{AM}{BM}=\dfrac{BM}{NC}=\dfrac{CP}{PA}=\dfrac{1}{2}\). Khi đó diện tích tam giac ABC là
Cho tam giác ABC, M thuộc BC, N thuộc AC sao cho \(\dfrac{BM}{MC}=\dfrac{2}{3};\dfrac{CN}{NA}=\dfrac{3}{5}\), AM cắt BN tại O.
a) Tính tỉ số \(\dfrac{AO}{AM}\)
b) Lấy điểm P trên AB sao cho \(\dfrac{PB}{BA}=\dfrac{2}{7}\). Chứng minh: AM, BN, CP đồng quy
Cho tam giác ABC có diện tích Lấy các điểm M, N, P lần lượt trên các cạnh AB, BC, CA sao cho Khi đó diện tích tam giác MNP là
Cho hình bình hành ABCD. Trên BC và CD lần lượt lấy hai điểm M và N sao cho: \(\dfrac{CN}{ND}=2.\dfrac{BM}{MC}\). Gọi P, Q theo thứ tự là giao điểm của AM, AN với BD. CMR: \(S_{\Delta AMN}=2S_{\Delta APQ}\)
Cho \(\Delta ABC\) , trên BC lấy điểm M sao cho \(\dfrac{MC}{MB}=\dfrac{1}{2}\) , trên AC lấy điểm N sao cho \(\dfrac{NC}{NA}=\dfrac{1}{2}\) . Gọi G là giao điểm của AM và BN. C/minh:
a, MN // AB
b, \(\dfrac{GM}{GA}=\dfrac{GN}{GB}=\dfrac{1}{3}\)
Cho hình bình hành ABCD. Trên BC và CD lần lượt lấy hai điểm M và N sao cho: \(\dfrac{CN}{ND}=2.\dfrac{BM}{MC}\). Gọi P, Q theo thứ tự là giao điểm của AM, AN với BD. CMR: \(S_{\Delta AMN}=2.S_{\Delta APQ}\)
Trên các cạnh AB , BC , CA của tam giác ABC lấy tương ứng ba điểm M ,N ,P sao cho \(\dfrac{MA}{MB}\)=\(\dfrac{NB}{NC}\)= \(\dfrac{PC}{PA}\)=2 . Biết diện tích tam giác AMP bằng 94cm2 , khi đó diện tích tam giác MNP bằng .....cm2
Cho hình chữ nhật ABCD có AB > AD. Gọi O là giao điểm của hai đường chéo. Kẻ AH vuông góc với BD (H thuộc B).
a, CMR: \(\Delta AHB\sim\Delta ADC\)
b, Trên tia đối của tia CB lấy điểm M sao cho AM cắt BD tại P, CD tại N.
CMR: \(\dfrac{ND}{NC}.\dfrac{MC}{MB}.\dfrac{PB}{PD}=1\)
c, Treen tia BH lấy điểm E sao cho: \(\dfrac{EB}{BH}=\dfrac{CN}{CD}\)
CMR: \(AE\perp NE\)
mK CẦN CHẮC CÂU C thôi.