Tìm giới hạn của dãy số \(\left(u_n\right)\) với :
a) \(u_n=\dfrac{\left(-1\right)^n}{n^2+1}\)
b) \(u_n=\dfrac{2^n-n}{3^n+1}\)
Cho hai dãy số \(\left(u_n\right)\) và \(\left(v_n\right)\). Biết \(\left|u_n-2\right|\le v_n\) với mọi n và \(\lim\limits v_n=0\). Có kết luận gì về giới hạn của dãy số \(\left(u_n\right)\) ?
Tính giới hạn của dãy số:
\(u_n=\dfrac{1}{2\sqrt{1}+\sqrt{2}}+\dfrac{1}{3\sqrt{2}+2\sqrt{3}}+...+\dfrac{1}{\left(n+1\right)\sqrt{n}+n\sqrt{n+1}}\)
Cho dãy số \(\left(u_n\right)\) thỏa mãn \(u_n< M\) với mọi \(n\). Chứng minh rằng nếu \(\lim\limits u_n=a\) thì \(a\le M\) ?
Cho dãy số (Un) thỏa mãn \(\left|U_n-2\right|\le\frac{2018}{n^2},\forall n\ge1\)
Tính limUn ?
Dãy số nào sau đây có giới hạn bằng 0 ?
A. \(u_n=\frac{n^2-2}{5n+3n^2}\)
B. \(u_n=\frac{n^2-2n}{5n+3n^2}\)
C. \(u_n=\frac{1-2n}{5n+3n^2}\)
D. \(u_n=\frac{1-2n^2}{5n+3n^2}\)
Cho hàm số f(x) = \(\left\{{}\begin{matrix}x^2sin\dfrac{1}{x}\left(x\ne0\right)\\0\left(x=0\right)\end{matrix}\right.\)
a, Tính \(g\left(x\right)=\lim\limits_{t\rightarrow0}=\dfrac{f\left(x+t\right)-f\left(x-2t\right)}{2t}\) (x thuộc R)
b, Khảo sát sự tồn tại của g'(x) với x thuộc R
Xét tính liên tục của hàm số
\(f\left(x\right)=\left\{{}\begin{matrix}\dfrac{x^2+5x+4}{x^3+1};x\ne-1\\1;x=-1\end{matrix}\right.\)
trên tập xác định của nó ?
Trong các giới hạn sau , giới hạn nào không tồn tại ?
A. \(lim\frac{x+1}{\sqrt{x-2}}\left(x\rightarrow1\right)\)
B. \(lim\frac{x+1}{\sqrt{-x+2}}\left(x\rightarrow-1\right)\)
C. \(lim\frac{x+1}{\sqrt{2-x}}\left(x\rightarrow1\right)\)
D. \(lim\frac{x+1}{\sqrt{2+x}}\left(x\rightarrow-1\right)\)