Ta có: \({u_n} - {u_{n - 1}} = \left( { - 2n + 3} \right) - \left[ { - 2\left( {n - 1} \right) + 3} \right] = - 2,\;\forall n \ge 2\).
Vậy \({u_n} = - 2n + 3\) là một cấp số cộng với \({u_1} = 1\) và công sai \(d = - 2\).
Ta có: \({u_n} - {u_{n - 1}} = \left( { - 2n + 3} \right) - \left[ { - 2\left( {n - 1} \right) + 3} \right] = - 2,\;\forall n \ge 2\).
Vậy \({u_n} = - 2n + 3\) là một cấp số cộng với \({u_1} = 1\) và công sai \(d = - 2\).
Cho dãy số \(\left( {{u_n}} \right)\) với \({u_n} = 4n - 3\). Chứng minh rằng \(\left( {{u_n}} \right)\) là một cấp số cộng. Xác định số hạng đầu \({u_1}\) và công sai d của cấp số cộng này. Từ đó viết số hạng tổng quát \({u_n}\) dưới dạng \({u_n} = {u_1} + \left( {n - 1} \right)d\)
Viết năm số hạng đầu của mỗi dãy số \(\left( {{u_n}} \right)\) sau và xét xem nó có phải là cấp số cộng không. Nếu dãy số đó là cấp số cộng, hãy tìm công sai d và viết số hạng tổng quát của nó dưới dạng \({u_n} = {u_1} + \left( {n - 1} \right)d\)
a) \({u_n} = 3 + 5n;\)
b) \({u_n} = 6n - 4\);
c) \({u_1} = 2,\;{u_n} = {u_{n - 1}} + n\);
d) \({u_1} = 2,\;{u_n} = {u_{n - 1}} + 3\).
Cho cấp số cộng \(\left( {{u_n}} \right)\) với số hạng đầu \({u_1}\) và công sai d
Để tính tổng của n số hạng đầu
\({S_n} = {u_1} + {u_2} + \ldots + {u_{n - 1}} + {u_n}\)
Hãy lần lượt thực hiện các yêu cầu sau:
a) Biểu diễn mỗi số hạng trong tổng \({S_n}\) theo số hạng đầu \({u_n}\) và công sai d
b) Viết \({S_n}\) theo thứ tự ngược lại: \({S_n} = {u_n} + {u_{n - 1}} + \ldots + {u_2} + {u_1}\) và sử dụng kết quả ở phần a) để biểu diễn mỗi số hạng trong tổng này theo \({u_1}\) và d
c) Cộng từng vế hai đẳng thức nhận được ở a), b) để tính \({S_n}\)theo \({u_1}\) và d
Cho cấp số cộng \(\left( {{u_n}} \right)\) với số hạng đầu \({u_1}\) và công sai d
a) Tính các số hạng \({u_2},{u_3},{u_4},{u_5}\) theo \({u_1}\) và d.
b) Dự đoán công thức tính số hạng tổng quát \({u_n}\) theo \({u_1}\) và d.
Cho dãy số \(\left( {{u_n}} \right)\) gồm tất cả các số tự nhiên lẻ, xếp theo thứ tự tăng dần
a) Viết năm số hạng đầu của dãy số.
b) Dự đoán công thức biểu diễn số hạng \({u_n}\) theo số hạng \({u_{n - 1}}\).
Một cấp số cộng cố số hạng đầu bằng 5 và công sai bằng 2. Hỏi phải lấy tổng của bao nhiêu số hạng đầu của cấp số cộng này để có tổng bằng 2700?
Xác định công sai, số hạng thứ 5, số hạng tổng quát và số hạng thứ 100 của mỗi cấp số cộng sau:
a) 4, 9,14, 19,...;
b) 1, -1, -3, -5,...
Một cấp số cộng có số hạng thứ 5 bằng 18 và số hạng thứ 12 bằng 32. Tìm số hạng thứ 50 của cấp số cộng này.
Dãy số không đổi a, a, a, ... có phải là một cấp số cộng không?