\(\widehat{BAH}+\widehat{B}=90^0\)
\(\widehat{ACB}+\widehat{B}=90^0\)
Do đó: \(\widehat{BAH}=\widehat{ACB}\)
\(\widehat{BAH}+\widehat{B}=90^0\)
\(\widehat{ACB}+\widehat{B}=90^0\)
Do đó: \(\widehat{BAH}=\widehat{ACB}\)
Cho ΔABC có góc B = góc C , kẻ AH vuông góc BC, H ∈ BC . Trên tia đối của tia BC lấy điểm D, trên tia đối của tia CB lấy điểm E sao cho BD = CE. Chứng minh:
a) AB = AC
b) ΔABD = ΔACE
c) ΔACD = ΔABE
d) AH là tia phân giác của góc DAE
e) Kẻ BK vuông góc AD, CI vuông góc AE. Chứng minh ba đường thẳng AH, BK, CI cùng đi qua một điểm.
Bài 4: Cho△ABC vuông tại A (AB< AC) ,BE là tia phân giác góc ABC (E ∈AC) . Trên cạnh BC lấy D sao cho AB = BD
1) Chứng minh : △ABE = △DBE
2) Chứng minh : ED ⊥BC
3) Qua A vẽ đường thẳng vuông góc với BC tại H . Chứng minh :AD là tia phân giác góc HAC.
cho tam giác ABC vuông tại A (AB<AC) tia phân giác của góc B cắt AC tại D trên cạnh BC lấy điểm E sao cho BE =BA vẽ AH vuông góc với BC tại H
a chứng minh tam giác ABD = tam giác EBD và AD = ED
b chứng minh AH song song với DE
Cho △ABC vuông tại A có góc B = 60 độ . Trên BC lấy điểm H sao cho HB = BA , từ H kẻ HE vuông góc với BC tại H , ( E thuộc AC ) . Chứng minh :
a, Tính góc C
b, BE là tia phân giác góc B
c, Gọi K là giao điểm của BA và HE . Chứng minh rằng BE vuông góc với KC
cho tam giác abc vuông tại a có góc b = 60 độ. trên bc lấy điểm h sao cho hb = ba, từ h kẻ he vuông góc bc tại h (e thuộc ac)
a) tính số đo góc C
b) chứng minh be là tia phân giác góc b
c) gọi k là giao điểm của ba và he. chứng minh rằng be vuông góc với kc
Cho tam giác ABC vuông tại A . Tia phân giác góc B cắt AC tại D , tia phân giác góc C cắt AB tại E kẻ DH vuông góc với BC tại H, kẻ EK vuông góc với BC tại K a) Chứng minh BA=BH b) BD vuông góc với AH c) Chứng minh AB+AC=BC+HK d) Tính góc HAK
cho tam giác ABC vuông cân tại A. vẽ AH vuông với BC tại H. a) chứng minh góc AHC=góc AHB b) Kẻ HM vuông góc với AC tại H. Trên tia đối của tia HM lấy điểm N sao cho HM=HN c) Chúng minh BN//AC d) Kẻ HQ vuông góc với AB tại Q. Chứng minh BC là đường trung trực của NQ
Cho tam giác ABC vuông tại A có AB= AC. Gọi H là trung điểm của cạnh BC. a. Chứng minh ΔAHB= ΔAHC b, Chứng minh rằng AH vuông góc với BC c. Tính số đo góc BHA và BCA? d. Trên tia đối của tia AH lấy điểm E sao cho AE = BC, Trên tia đối của tia CA lấy điểm F sao cho CF = AB. Tính góc EBF
VẼ HÌNH CHO MÌNH LUÔN NHA! CẢM ƠN MỌI NGƯỜI!
Bài 13: Cho tam giác ABC vuông tại A, AB > AC. Vẽ AH vuông góc với BC tại H. Trên tia HC lấy điểm D sao cho HD = HA. Đường thẳng vuông góc với BC tại D cắt AC tại E. Vẽ EF vuông góc với AH tại F.
a) Chứng minh: ED // FH
b) Chứng minh: , từ đó suy ra EF = DH.
c) Chứng minh: . Từ đó chứng minh: .
d) Chứng minh AB = AE và tính số đo các góc của tam giác ABE.