a) Xét tam giác ABC và tam giác ABD cùng vuông tại A, ta có :
BA là cạnh chung
DA=AC ( Giả thiết )
=> Tam giác ABC = Tam giác ABD ( Cạnh vuông-cạnh vuông )
b) Xem lại đề.
a) Xét tam giác ABC và tam giác ABD cùng vuông tại A, ta có :
BA là cạnh chung
DA=AC ( Giả thiết )
=> Tam giác ABC = Tam giác ABD ( Cạnh vuông-cạnh vuông )
b) Xem lại đề.
Cho tam giác ABC vuông tại A. Trên tia đối của tia AC lấy điểm D sao cho AD= AC
a) C/m tam giác ABC = tam giác ABD
cho tam giác ABC (AB>AC). Gọi M là trung điểm của BC. Trên tia đối của tia MA lấy điểm D sao cho MA=MD. a) Chứng minh tam giác ACM= tam giác DBM. b) Kẻ BE vuông góc với AM tại E. Trên tia MD lấy điểm F sao cho M là trung điểm của EF. Chứng minh CF vuông góc với AD. c) Trên tia FB lấy điểm G sao cho B là trung điểm FG. Gọi H là trung điểm của BE. Chứng minh ba điểm G,H,C thẳng hàng
Cho tam giác ABC vuông tại A . Trên tia đối của tia AC lấy điểm D sao cho AD = AC
a.Chứng minh tam giác ABC = tam giác ABD
b. Trên tia đối của tia AB lấy điểm M .Chứng minh \(\Delta\)MBD=\(\Delta\)MBC
Cho có AB = AC. D là trung điểm của BC.
a) Chứng minh: = và AD là tia phân giác của .
b) Vẽ tại M. Trên cạnh Ac lấy điểm N sao cho AN = AM. Chứng minh: = và .
c) Gọi K là trung điểm của NC. Trên tia DK lấy điểm E sao cho K là trung điểm của DE. Chứng minh: = .
d) Chứng minh: MN // BC và 3 điểm M, N, E thẳng hàng.
Cho \(\Delta ABC\) có AB = AC. D là trung điểm của BC.
a) Chứng minh: \(\Delta ADB\) = \(\Delta ADC\) và AD là tia phân giác của \(\widehat{BAC}\).
b) Vẽ \(DC\perp AD\) tại M. Trên cạnh Ac lấy điểm N sao cho AN = AM. Chứng minh: \(\Delta AMD\) = \(\Delta AND\) và \(DC\perp AN\).
c) Gọi K là trung điểm của NC. Trên tia DK lấy điểm E sao cho K là trung điểm của DE. Chứng minh: \(\Delta KCD\) = \(\Delta KNE\).
d) Chứng minh: MN // BC và 3 điểm M, N, E thẳng hàng.
Cho tam giác ABC có có AB = AC. Gọi D là trung điểm của cạnh BC. a) Chứng minh rằng : tam giác ABD bằng tam giác ACD b) Trên tia đối của tia DA, lấy điểm M sao cho MD = MA. Chứng minh: AB // CD.
Cho góc xOy. Trên tia Ox lấy các điểm A và B, trên tia Oy lấy các điểm C và D sao cho OA = OC, OB = OD. Chứng minh rằng AD = BC.
Cho tam giác ABC có A<90°, gọi I là trung điểm của AC, Trên tia đối của tia IB lấy điểm D sao cho IB = ID. Nối C với D
a) gọi M là trung điểm của BC , N là trung điểm của AD . Chừn minh IM=IN
b) chứng minh I là trung điểm của MN