Cho tam giác ABC nội tiếp đường tròn (O), hai đường cao BD và CE cắt nhau tại H. Vẽ đường kính AF.
a) Tứ giác BFCH là hình gì?
b) Gọi M là trung điểm của BC. Chứng minh rằng ba điểm H,M,F thẳng hàng
c) Chứng minh rằng Om=1/2AH
Cho tam giác ABC nội tiếp đường tròn (O),2 đường cao BD và CE cắt nhau tại H,Vẽ đường kính AF
a)Tứ giác BFCH là hình gì?
b)gọi M là trung điểm BC.Chứng minh rằng 3 điểm H,M,F thẳng hẳng
c)Chứng minh OM=\(\dfrac{1}{2}\)AH
Cho ΔABC nội tiếp (O), hai đường cao BE, CF cắt nhau tại H. Tia AO cắt (O) tại D.
a. Chứng minh tứ giác BHCD là hình bình hành.
b. Chứng minh bốn điểm B, F, E, C cùng thuộc một đường tròn. Xác định tâm.
c. Chứng minh AE.AC=AF.AB
d. Gọi M là trung điểm của BC. Chứng minh M, H, D thẳng hàng và OM=AH/2
Cho tam giác ABC có ba góc nhọn nội tiếp đường tròn O các đường cao AM , BN cho tam giác ABC cắt nhau tại H và cắt đường tròn lần lượt tại D và E Chứng minh A, tứ giác MHNC nội tiếp đường tròn B, CD = CE C, CB là tia phân giác của góc HCD
Cho tam giác nhọn ABC nội tiếp (O ,R) có AD, BE, CF là ba đường cao cắt nhau tại H. Vẽ đường kính AM, AD cắt đường tròn tại N.
a) Chứng minh tứ giác BHCM là hình bình hành.
b) Chứng minh góc BAN bằng góc MAC, và tứ giác BNMC là hình thang cân.
Cho tam giác ABC nội tiếp đường tròn (O). Trên cung nhỏ BC của đường tròn (O), lấy điểm M. Gọi D, E, F lần lượt là hình chiếu vuông góc của M lên các đường thẳng BC, CA, AB. Chứng minh rằng ba điểm D, E, F thẳng hàng.
Cho tam giác nhọn ABC nội tiếp đường tròn o . Các đường cao BD và CE của tam giác cắt nhau tại D. CM/ tứ giác ADCE và BCDE nội tieps đường tròn b.TIa BD và CE lần lượt cắt đường tròn tại M và N. Cm DE//MN c. ké đườn kính Ak. m tứ giác BKCM là hình thang cân
Bài 2: Cho tam giác ABC nhọn AB<AC, vẽ (O) đường kính BC, đường tròn này cắt AB, AC lần lượt tại M và N, BN và CM cắt nhau tại H, AH cắt BC tại K
a) Chứng minh: AK vuông góc với BC
b) Chứng minh các tứ giác BMHK, AMKC, AMHN và ABKN nội tiếp
c) Chứng minh H là tâm đường tròn nội tiếp tam giác MNK
d) Chứng minh tứ giác MNOK nội tiếp
Bài 3: Cho điểm M nằm ngoài (O), vẽ hai tiếp tuyến MA, MB và cát tuyến MCD với (O), O nằm ngoài góc DMA, Gọi I là trung điểm của dây CD.
a) Chứng minh năm điểm M,A,I, O, B cùng thuộc một đường tròn
b) Chứng minh MA.MB = MC. MD
c) Gọi H là giao điểm của OM với (O). Chứng minh tứ giác CHOD nội tiếp
d) Gọi K là giao điểm của AB và OI. Chứng minh KC và KD là hai tiếp tuyến của (O).