Xét\(\Delta ABE\) và \(\Delta ACF\) có
\(\widehat{A}\)chung
\(\widehat{E}=\widehat{F}=90^o\left(gt\right)\)
\(\Rightarrow\Delta ABE\sim\Delta ACF\left(gg\right)\)
Xét\(\Delta ABE\) và \(\Delta ACF\) có
\(\widehat{A}\)chung
\(\widehat{E}=\widehat{F}=90^o\left(gt\right)\)
\(\Rightarrow\Delta ABE\sim\Delta ACF\left(gg\right)\)
Cho tam giác ABC có 3 góc nhọn, 2 đường cao BE và CF cắt nhau tại H.
a) Chứng minh DAEB ∽ DAFC.
b) Chứng minh tam giác AEF ∽ tam giác ABC.
c) Tia AH cắt BC tại D. Chứng minh FC là tia phân giác của góc DFE.
d) Đường thẳng vuông góc với AB tại B cắt đường thẳng vuông góc với AC tại C ở M. Gọi O là trung điểm của BC, I là trung điểm của AM. Chứng minh SAHM = 4SIOM.
Làm giúp mình câu c,d với!!!
Cho tam giác ABC có 3 góc nhọn, 2 đường cao BE và CF cắt nhau tại H.
a) Chứng minh tam giác AEB ∽ tam giác AFC.
b) Chứng minh tam giác AEF ∽tam giác ABC.
c) Tia AH cắt BC tại D. Chứng minh FC là tia phân giác của góc DFE.
d) Đường thẳng vuông góc với AB tại B cắt đường thẳng vuông góc với AC tại C ở M. Gọi O là trung điểm của BC, I là trung điểm của AM. Chứng minh SAHM = 4SIOM.
Cho tam giác ABC nhọn có ba đường cao AD, BE và CF cắt nhau tại H
a) Chứng minh rằng: tam giác ABE đồng dạng tam giác ACF và AE.AC = AF.AB
b) Chứng minh rằng: BH.BE = BD.BC
c) Gọi N là giao điểm của EF và AD. Chứng minh rằng FC là tia phân giác của góc DEF, rồi suy ra: NH.AD = AN.HD.
mọi người giúp em giải câu c thôi ạ
Cho tam giác ABC (AB<AC) có đường cao AD (D thuộc BC)
a/ Chứng minh hai tam giác DAB và ACB đồng dạng
b/ Phân giác góc ABC cắt AC tại E, từ C vẽ đường thằng vuông góc với đường thẳng BE tại F chứng minh AE.AB=EC.BD
c/ Kẻ FH vuông AC tại H chứng minh hai góc BCF và HCF bằng nhau
d/ I là trung điểm BC, chứng minh I,H,F thẳng hàng
Cho cho tam giác nhọn ABC. 2 đường cao BE và CF giao nhau tại H.
a) Chứng minh tam giác ABE đồng dạng với tam giác ACF và AF*AB= AE*AB
b) Chứng minh góc ACB=góc AFE
c) Chứng minh BH*BE+CH*CF=BC2
d) Kẻ AH vuông góc với BC tại D. Chứng minh \(\dfrac{HD}{AD}+\dfrac{HE}{BE}+\dfrac{HF}{CE}=1\)
có ai biết bài toán này có trong saachs tham khảo nào ko
Cho tam giác ABC có ba góc nhọn (AB < AC). Kẻ đường cao BE và CF cắt nhau tại H.
1) Gọi K là giao điểm của AH và BC. Chứng minh: tam giác BKF đồng dạng với tam giácBAC.
2) Tia EF cắt AK và BC lần lượt tại N, D. Chứng minh DE.FN = DF.NE
3) Gọi O, I lần lượt là trung điểm của BC và AH. Chứng minh: ON//DI.có ai biết bài toán này có trong saachs tham khảo nào kocó ai biết bài toán này có trong saachs tham khảo nào ko
Cho tam giác ABC có ba góc nhọn (AB < AC). Kẻ đường cao BE và CF cắt nhau tại H.
1) Gọi K là giao điểm của AH và BC. Chứng minh: tam giác BKF đồng dạng với tam giácBAC.
2) Tia EF cắt AK và BC lần lượt tại N, D. Chứng minh DE.FN = DF.NE
3) Gọi O, I lần lượt là trung điểm của BC và AH. Chứng minh: ON//DI.có ai biết bài toán này có trong saachs tham khảo nào kocó ai biết bài toán này có trong saachs tham khảo nào ko
Cho tam giác ABC có ba góc nhọn (AB < AC). Kẻ đường cao BE và CF cắt nhau tại H.
1) Gọi K là giao điểm của AH và BC. Chứng minh: tam giác BKF đồng dạng với tam giácBAC.
2) Tia EF cắt AK và BC lần lượt tại N, D. Chứng minh DE.FN = DF.NE
3) Gọi O, I lần lượt là trung điểm của BC và AH. Chứng minh: ON//DI.có ai biết bài toán này có trong saachs tham khảo nào kocó ai biết bài toán này có trong saachs tham khảo nào ko
Cho tam giác ABC có ba góc nhọn (AB < AC). Kẻ đường cao BE và CF cắt nhau tại H.
1) Gọi K là giao điểm của AH và BC. Chứng minh: tam giác BKF đồng dạng với tam giácBAC.
2) Tia EF cắt AK và BC lần lượt tại N, D. Chứng minh DE.FN = DF.NE
3) Gọi O, I lần lượt là trung điểm của BC và AH. Chứng minh: ON//DI.có ai biết bài toán này có trong saachs tham khảo nào ko
Cho tam giác ABC có ba góc nhọn (AB < AC). Kẻ đường cao BE và CF cắt nhau tại H.
1) Gọi K là giao điểm của AH và BC. Chứng minh: tam giác BKF đồng dạng với tam giácBAC.
2) Tia EF cắt AK và BC lần lượt tại N, D. Chứng minh DE.FN = DF.NE
3) Gọi O, I lần lượt là trung điểm của BC và AH. Chứng minh: ON//DI.có ai biết bài toán này có trong saachs tham khảo nào ko
Cho tam giác ABC có ba góc nhọn (AB < AC). Kẻ đường cao BE và CF cắt nhau tại H.
1) Gọi K là giao điểm của AH và BC. Chứng minh: tam giác BKF đồng dạng với tam giácBAC.
2) Tia EF cắt AK và BC lần lượt tại N, D. Chứng minh DE.FN = DF.NE
3) Gọi O, I lần lượt là trung điểm của BC và AH. Chứng minh: ON//DI.có ai biết bài toán này có trong saachs tham khảo nào ko
Cho tam giác ABC có ba góc nhọn (AB < AC). Kẻ đường cao BE và CF cắt nhau tại H.
1) Gọi K là giao điểm của AH và BC. Chứng minh: tam giác BKF đồng dạng với tam giácBAC.
2) Tia EF cắt AK và BC lần lượt tại N, D. Chứng minh DE.FN = DF.NE
3) Gọi O, I lần lượt là trung điểm của BC và AH. Chứng minh: ON//DI.có ai biết bài toán này có trong saachs tham khảo nào ko
Cho tam giác ABC có ba góc nhọn (AB < AC). Kẻ đường cao BE và CF cắt nhau tại H.
1) Gọi K là giao điểm của AH và BC. Chứng minh: tam giác BKF đồng dạng với tam giácBAC.
2) Tia EF cắt AK và BC lần lượt tại N, D. Chứng minh DE.FN = DF.NE
3) Gọi O, I lần lượt là trung điểm của BC và AH. Chứng minh: ON//DI.có ai biết bài toán này có trong saachs tham khảo nào ko
Cho tam giác ABC có ba góc nhọn (AB < AC). Kẻ đường cao BE và CF cắt nhau tại H.
1) Gọi K là giao điểm của AH và BC. Chứng minh: tam giác BKF đồng dạng với tam giácBAC.
2) Tia EF cắt AK và BC lần lượt tại N, D. Chứng minh DE.FN = DF.NE
3) Gọi O, I lần lượt là trung điểm của BC và AH. Chứng minh: ON//DI.có ai biết bài toán này có trong saachs tham khảo nào ko
Cho tam giác ABC có ba góc nhọn (AB < AC). Kẻ đường cao BE và CF cắt nhau tại H.
1) Gọi K là giao điểm của AH và BC. Chứng minh: tam giác BKF đồng dạng với tam giácBAC.
2) Tia EF cắt AK và BC lần lượt tại N, D. Chứng minh DE.FN = DF.NE
3) Gọi O, I lần lượt là trung điểm của BC và AH. Chứng minh: ON//DI.có ai biết bài toán này có trong saachs tham khảo nào ko
Cho tam giác ABC có ba góc nhọn (AB < AC). Kẻ đường cao BE và CF cắt nhau tại H.
1) Gọi K là giao điểm của AH và BC. Chứng minh: tam giác BKF đồng dạng với tam giácBAC.
2) Tia EF cắt AK và BC lần lượt tại N, D. Chứng minh DE.FN = DF.NE
3) Gọi O, I lần lượt là trung điểm của BC và AH. Chứng minh: ON//DI.
Cho tam giác ABC có ba góc nhọn (AB < AC). Kẻ đường cao BE và CF cắt nhau tại H.
1) Gọi K là giao điểm của AH và BC. Chứng minh: tam giác BKF đồng dạng với tam giácBAC.
2) Tia EF cắt AK và BC lần lượt tại N, D. Chứng minh DE.FN = DF.NE
3) Gọi O, I lần lượt là trung điểm của BC và AH. Chứng minh: ON//DI.có ai biết bài toán này có trong saachs tham khảo nào ko
Cho tam giác ABC có ba góc nhọn (AB < AC). Kẻ đường cao BE và CF cắt nhau tại H.
1) Gọi K là giao điểm của AH và BC. Chứng minh: tam giác BKF đồng dạng với tam giácBAC.
2) Tia EF cắt AK và BC lần lượt tại N, D. Chứng minh DE.FN = DF.NE
3) Gọi O, I lần lượt là trung điểm của BC và AH. Chứng minh: ON//DI.có ai biết bài toán này có trong saachs tham khảo nào ko
Cho tam giác ABC có ba góc nhọn (AB < AC). Kẻ đường cao BE và CF cắt nhau tại H.
1) Gọi K là giao điểm của AH và BC. Chứng minh: tam giác BKF đồng dạng với tam giácBAC.
2) Tia EF cắt AK và BC lần lượt tại N, D. Chứng minh DE.FN = DF.NE
3) Gọi O, I lần lượt là trung điểm của BC và AH. Chứng minh: ON//DI.có ai biết bài toán này có trong saachs tham khảo nào ko
Cho tam giác ABC có ba góc nhọn (AB < AC). Kẻ đường cao BE và CF cắt nhau tại H.
1) Gọi K là giao điểm của AH và BC. Chứng minh: tam giác BKF đồng dạng với tam giácBAC.
2) Tia EF cắt AK và BC lần lượt tại N, D. Chứng minh DE.FN = DF.NE
3) Gọi O, I lần lượt là trung điểm của BC và AH. Chứng minh: ON//DI.có ai biết bài toán này có trong saachs tham khảo nào ko
Cho tam giác ABC có ba góc nhọn (AB < AC). Kẻ đường cao BE và CF cắt nhau tại H.
1) Gọi K là giao điểm của AH và BC. Chứng minh: tam giác BKF đồng dạng với tam giácBAC.
2) Tia EF cắt AK và BC lần lượt tại N, D. Chứng minh DE.FN = DF.NE
3) Gọi O, I lần lượt là trung điểm của BC và AH. Chứng minh: ON//DI.có ai biết bài toán này có trong saachs tham khảo nào ko
Cho tam giác ABC có ba góc nhọn (AB < AC). Kẻ đường cao BE và CF cắt nhau tại H.
1) Gọi K là giao điểm của AH và BC. Chứng minh: tam giác BKF đồng dạng với tam giácBAC.
2) Tia EF cắt AK và BC lần lượt tại N, D. Chứng minh DE.FN = DF.NE
3) Gọi O, I lần lượt là trung điểm của BC và AH. Chứng minh: ON//DI.có ai biết bài toán này có trong saachs tham khảo nào ko
Cho tam giác ABC có ba góc nhọn (AB < AC). Kẻ đường cao BE và CF cắt nhau tại H.
1) Gọi K là giao điểm của AH và BC. Chứng minh: tam giác BKF đồng dạng với tam giácBAC.
2) Tia EF cắt AK và BC lần lượt tại N, D. Chứng minh DE.FN = DF.NE
3) Gọi O, I lần lượt là trung điểm của BC và AH. Chứng minh: ON//DI.có ai biết bài toán này có trong saachs tham khảo nào ko
Cho tam giác ABC có ba góc nhọn (AB < AC). Kẻ đường cao BE và CF cắt nhau tại H.
1) Gọi K là giao điểm của AH và BC. Chứng minh: tam giác BKF đồng dạng với tam giácBAC.
2) Tia EF cắt AK và BC lần lượt tại N, D. Chứng minh DE.FN = DF.NE
3) Gọi O, I lần lượt là trung điểm của BC và AH. Chứng minh: ON//DI.có ai biết bài toán này có trong saachs tham khảo nào ko
Cho tam giác ABC có ba góc nhọn (AB < AC). Kẻ đường cao BE và CF cắt nhau tại H.
1) Gọi K là giao điểm của AH và BC. Chứng minh: tam giác BKF đồng dạng với tam giácBAC.
2) Tia EF cắt AK và BC lần lượt tại N, D. Chứng minh DE.FN = DF.NE
3) Gọi O, I lần lượt là trung điểm của BC và AH. Chứng minh: ON//DI.có ai biết bài toán này có trong saachs tham khảo nào ko
Cho tam giác ABC có ba góc nhọn (AB < AC). Kẻ đường cao BE và CF cắt nhau tại H.
1) Gọi K là giao điểm của AH và BC. Chứng minh: tam giác BKF đồng dạng với tam giácBAC.
2) Tia EF cắt AK và BC lần lượt tại N, D. Chứng minh DE.FN = DF.NE
3) Gọi O, I lần lượt là trung điểm của BC và AH. Chứng minh: ON//DI.
Cho tam giác ABC có ba góc nhọn (AB < AC). Kẻ đường cao BE và CF cắt nhau tại H.
1) Gọi K là giao điểm của AH và BC. Chứng minh: tam giác BKF đồng dạng với tam giácBAC.
2) Tia EF cắt AK và BC lần lượt tại N, D. Chứng minh DE.FN = DF.NE
3) Gọi O, I lần lượt là trung điểm của BC và AH. Chứng minh: ON//DI.có ai biết bài toán này có trong saachs tham khảo nào ko
Cho tam giác ABC có ba góc nhọn (AB < AC). Kẻ đường cao BE và CF cắt nhau tại H.
1) Gọi K là giao điểm của AH và BC. Chứng minh: tam giác BKF đồng dạng với tam giácBAC.
2) Tia EF cắt AK và BC lần lượt tại N, D. Chứng minh DE.FN = DF.NE
3) Gọi O, I lần lượt là trung điểm của BC và AH. Chứng minh: ON//DI.có ai biết bài toán này có trong saachs tham khảo nào ko
Cho tam giác ABC có ba góc nhọn (AB < AC). Kẻ đường cao BE và CF cắt nhau tại H.
1) Gọi K là giao điểm của AH và BC. Chứng minh: tam giác BKF đồng dạng với tam giácBAC.
2) Tia EF cắt AK và BC lần lượt tại N, D. Chứng minh DE.FN = DF.NE
3) Gọi O, I lần lượt là trung điểm của BC và AH. Chứng minh: ON//DI.có ai biết bài toán này có trong saachs tham khảo nào ko
Cho tam giác ABC có ba góc nhọn (AB < AC). Kẻ đường cao BE và CF cắt nhau tại H.
1) Gọi K là giao điểm của AH và BC. Chứng minh: tam giác BKF đồng dạng với tam giácBAC.
2) Tia EF cắt AK và BC lần lượt tại N, D. Chứng minh DE.FN = DF.NE
3) Gọi O, I lần lượt là trung điểm của BC và AH. Chứng minh: ON//DI.có ai biết bài toán này có trong saachs tham khảo nào ko
Cho tam giác ABC có ba góc nhọn (AB < AC). Kẻ đường cao BE và CF cắt nhau tại H.
1) Gọi K là giao điểm của AH và BC. Chứng minh: tam giác BKF đồng dạng với tam giácBAC.
2) Tia EF cắt AK và BC lần lượt tại N, D. Chứng minh DE.FN = DF.NE
3) Gọi O, I lần lượt là trung điểm của BC và AH. Chứng minh: ON//DI.
Cho tam giác ABC có ba góc nhọn (AB < AC). Kẻ đường cao BE và CF cắt nhau tại H.
1) Gọi K là giao điểm của AH và BC. Chứng minh: tam giác BKF đồng dạng với tam giácBAC.
2) Tia EF cắt AK và BC lần lượt tại N, D. Chứng minh DE.FN = DF.NE
3) Gọi O, I lần lượt là trung điểm của BC và AH. Chứng minh: ON//DI.có ai biết bài toán này có trong saachs tham khảo nào ko
Cho tam giác ABC có ba góc nhọn (AB < AC). Kẻ đường cao BE và CF cắt nhau tại H.
1) Gọi K là giao điểm của AH và BC. Chứng minh: tam giác BKF đồng dạng với tam giácBAC.
2) Tia EF cắt AK và BC lần lượt tại N, D. Chứng minh DE.FN = DF.NE
3) Gọi O, I lần lượt là trung điểm của BC và AH. Chứng minh: ON//DI.có ai biết bài toán này có trong saachs tham khảo nào ko
Cho tam giác ABC có ba góc nhọn (AB < AC). Kẻ đường cao BE và CF cắt nhau tại H.
1) Gọi K là giao điểm của AH và BC. Chứng minh: tam giác BKF đồng dạng với tam giácBAC.
2) Tia EF cắt AK và BC lần lượt tại N, D. Chứng minh DE.FN = DF.NE
3) Gọi O, I lần lượt là trung điểm của BC và AH. Chứng minh: ON//DI.có ai biết bài toán này có trong saachs tham khảo nào ko
Cho tam giác ABC có ba góc nhọn (AB < AC). Kẻ đường cao BE và CF cắt nhau tại H.
1) Gọi K là giao điểm của AH và BC. Chứng minh: tam giác BKF đồng dạng với tam giácBAC.
2) Tia EF cắt AK và BC lần lượt tại N, D. Chứng minh DE.FN = DF.NE
3) Gọi O, I lần lượt là trung điểm của BC và AH. Chứng minh: ON//DI.có ai biết bài toán này có trong saachs tham khảo nào ko
Cho tam giác ABC có ba góc nhọn (AB < AC). Kẻ đường cao BE và CF cắt nhau tại H.
1) Gọi K là giao điểm của AH và BC. Chứng minh: tam giác BKF đồng dạng với tam giácBAC.
2) Tia EF cắt AK và BC lần lượt tại N, D. Chứng minh DE.FN = DF.NE
3) Gọi O, I lần lượt là trung điểm của BC và AH. Chứng minh: ON//DI.có ai biết bài toán này có trong saachs tham khảo nào ko
Cho tam giác ABC có ba góc nhọn (AB < AC). Kẻ đường cao BE và CF cắt nhau tại H.
1) Gọi K là giao điểm của AH và BC. Chứng minh: tam giác BKF đồng dạng với tam giácBAC.
2) Tia EF cắt AK và BC lần lượt tại N, D. Chứng minh DE.FN = DF.NE
3) Gọi O, I lần lượt là trung điểm của BC và AH. Chứng minh: ON//DI.
Cho ∆ABC vuông tại A, AB>AC, M là 1 điểm tuỳ ý trên BC. Qua M kẻ đường thẳng vuông góc với BC cắt AB tại I và cắt tia CA tại D. Chứng minh rằng:
a) ∆ABC đồng dạng với ∆MDC
b) BI.BA=BM.BC
c) CI cắt BD tại K. Chứng minh BI.BA + CI.CK không phụ thuộc vào vị trí của điểm M
d) \(\widehat{MAI}=\widehat{BDI}\), từ đó suy ra AB là tia phân giác của góc MAK.
cho tam giác ABC có 3 góc nhọn , hai đường cao BE, CF cắt nhau tại H (E thuộc AC, F thuộc AB). Chứng minh:
a) tam giác AEB đồng dạng với tam giác AFC
b) tam giác AEF đồng dạng với tam giác ABC
C) tia AH cắt BC tại D. Vẽ DM vuông góc với AB tại M, DN vuông góc với AC tại N, DK vuông góc với CF tại K. Chứng minh 3 điểm M, K, N thẳng hàng.