Bài 4: Đường trung bình của tam giác, hình thang

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Nguyễn Thi Như Thảo

Cho ΔABC cân tại A có AH là đường cao Vẽ HD⊥AC tại D. Gọi M,N lần lượt là trung điểm của DH và DC. a) c/m: MN⊥AH; b) c/m: AM⊥BD

Akai Haruma
1 tháng 10 2020 lúc 23:15

Lời giải:
a)

Xét tam giác $HDC$ có $M,N$ lần lượt là trung điểm $DH, DC$ nên $MN$ là đường trung bình ứng với cạnh $HC$ của tam giác $HDC$

$\Rightarrow MN\parallel HC\Rightarrow MN\parallel BC$

Mà $AH\perp BC$ nên $MN\perp AH$

b) Gọi $T$ là giao điểm $BD$ và $AM$

Vì $ABC$ là tam giác cân nên $\widehat{B}=\widehat{C}$

$\Rightarrow \triangle ABH\sim \triangle HCD$ (g.g)

$\Rightarrow \frac{AH}{BH}=\frac{HD}{CD}$

$\Leftrightarrow \frac{AH}{2BH}=\frac{HD}{2CD}$

$\Leftrightarrow \frac{AH}{BC}=\frac{HM}{CD}$

$\Leftrightarrow \frac{AH}{HM}=\frac{BC}{CD}$

Xét tam giác $AMH$ và $BDC$ có:

$\frac{AH}{HM}=\frac{BC}{CD}$ (cmt)

$\widehat{AHM}=\widehat{BCD}(=90^0-\widehat{HAC})$

$\Rightarrow \triangle AMH\sim \triangle BDC$ (c.g.c)

$\Rightarrow \widehat{MAH}=\widehat{DBC}$

$\Leftrightarrow \widehat{TAE}=\widehat{EBH}$

$\Rightarrow \widehat{ATE}=\widehat{EHB}=90^0$

$\Rightarrow AM\perp BD$

Akai Haruma
1 tháng 10 2020 lúc 23:16

Hình vẽ:

Đường trung bình của tam giác, hình thang

Khách vãng lai đã xóa