Cho ΔABC cân tại A, đường cao BH. Trên đáy BC lấy M, MD vuông góc AB, ME vuông góc AC, MF vuông góc BH. Chứng minh ΔDMB = ΔFMB
cho ΔABC cân tại A, có góc BAC nhọn, qua A vẽ tia phân giác BAC cắt BC tại D a, chứng minh Δ ABD= ΔACD b, Vẽ đường trung tuyến CF cuả ΔABC cắt AD tại G chứng minh G là trọng tâm của ΔABC c, Gọi H là trung điểm của DC . Qua H vẽ đường thẳng vuông góc với cạnh DC cắt AC tại E. chưng minh ΔDEC câb d, chứng minh ba điểm BGE thẳng hàng và AD > BD.
Cho ∆ABC cân tại A, đường cao BH, CK a) Chứng minh BH = CK b) Chứng minh HK // BC c) BH cắt CK tại I. Gọi trung điểm AI là M, trung điểm AH là N. Chứng minh MN//BH d) Gọi giao điểm của IN và HM là K. Gọi D là trung điểm IH. Chứng minh A, K, D thẳng hàng e) Chứng minh: MN = 1/2 IK
Cho ΔABC cân tại A, đường cao AH. N là trung điểm AC, Hai đoạn BN và AH giao tại G. Trên tia đối NB lấy K sao cho NK = NG. Chứng minh AG // CK
Trên tia đối của các tia BC và CB của ΔABC cân tại đỉnh A lấy theo thứ tự 2 điểm D và E sao cho BD= CE
a. CMR: ΔACE= ΔADB. Từ đó suy ra ΔACE cân tại A
b. Gọi AM là trung tuyến của ΔABC. Chứng minh AM là tia phân giác của góc DAE
c. Từ B và C kẻ BH và CK vuông góc với AD= AE. HB và KC lần lượt cắt AM tại O và O'. Chứng minh: O và O' trùng nhau
Cho ΔABC vuông tại A. Tia phân giác của \(\widehat{ABC}\) cắt AC tại D. Trên cạnh BC lấy điểm E sao cho BE=BA.
a) Chứng minh BD là đường trung trực của đoạn thẳng AE.
b) Qua A kẻ đường thẳng song song với BD cắt ED tại K. Chứng minh: KE < 2AB
Cho ΔABC có A^= 90 độ, vẽ tia phân giác C^ cắt AB ở H. Lấy E ∈BC sao cho CA = CE
a) Chứng minh ΔCAH = ΔCEH và HE ⊥ BC
b) Kẻ EK ⊥ AC tại K, EK cắt CH tại I. Chứng minh ˆHEI = HAI^
c) Chứng minh HE // AI và ˆAIE−ˆABC= 90 độ
Bài toán 13. Cho ΔABC vuông cân tại A, trung tuyến AM. Lấy E ∈ BC. BH, CK ⊥ AE (H, K ∈ AE). Chứng minh rằng Δ MHK vuông cân.
Bài toán 14. Cho ΔABC có góc ABC = 500; góc BAC = 700. Phân giác trong góc ACB cắt AB tại M. Trên MC lấy điểm N sao cho góc MBN = 400. Chứng minh rằng: BN = MC.
Bài toán 15. Cho ΔABC. Vẽ ra phía ngoài của tam giác này các tam giác vuông cân ở A là ABE và ACF. Vẽ AH ⊥ BC. Đường thẳng AH cắt EF tại O. Chứng minh rằng O là trung điểm của EF.
Cho ΔABC cân tại A. Qua A kẻ đường thẳng vuông góc vói BC, cắt BC tại H. Gọi M và N lần lượt là trung điểm của AC và AB
a) C.minh ΔAHB = ΔAHC
b) Tính độ dài AH bt AB = AC = 10cm, BC = 12cm
c) C.minh MN//BC
d) C.minh ΔGBC cân tại G
e) Gọi G là giao điểm của BM và CN. C.minh 3 điểm A, G, H thẳng hàng
_Vẽ hộ hình, cảm ơn