Có thể thay \(a;b;c;d\) vào giải hệ 4 ẩn:
\(\left\{{}\begin{matrix}1+a+b+c+d=7\\16+8a+4b+2c+d=10\\81+27a+9b+3c+d=13\\256+64a+16b+4c+d=16\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=-10\\b=35\\c=-47\\d=28\end{matrix}\right.\)
// Hoặc 1 cách khác, nhận thấy với một vài giá trị x xác định \(P\left(x+1\right)=P\left(x\right)+3\Rightarrow\) ta tổng quát hóa được \(P\left(x\right)=3\left(x-1\right)+7\) ở một vài giá trị
\(\Rightarrow\) Đặt \(Q\left(x\right)=P\left(x\right)-\left[3\left(x-1\right)+7\right]\) thì ta có \(Q\left(1\right)=Q\left(2\right)=Q\left(3\right)=Q\left(4\right)=0\)
Mà \(Q\left(x\right)\) bậc 4 \(\Rightarrow Q\left(x\right)=\left(x-1\right)\left(x-2\right)\left(x-3\right)\left(x-4\right)\)
\(\Rightarrow P\left(x\right)=Q\left(x\right)+3\left(x-1\right)+7\)
\(\Rightarrow P\left(x\right)=\left(x-1\right)\left(x-2\right)\left(x-3\right)\left(x-4\right)+3\left(x-1\right)+7\)
Khai triển ra ta sẽ được các hệ số a, b, c, d