p(x)=ax3+bx2+cx+d
p(x)⋮5 ∀ x
=> p(5)⋮5=> (a53+b52+c5+d)⋮5
=> d⋮5
=> (ax3+bx2+cx)⋮5
=>p(1)=a13+b12+c1[p(1)⋮5]
=a+b+c
p(-1)=a(-1)3+b(-1)2+c(-1)[p(-1)⋮5]
=-a+b-c
=>p(1)+p(-1)=(a+b+c)+(-a+b-c)
=b⋮5
=> (ax3+cx)⋮5
ax3+cx
=x(ax2+c)⋮5
=> ax2+c⋮5
Với x=5=> a.52+c⋮5
=> c⋮5
=> ax2⋮5
=>a⋮5
Vậy a,b,c,d ⋮5