a) \(M=x^2-x+1\)
\(\Leftrightarrow M=x^2-2.x.\dfrac{1}{2}+\left(\dfrac{1}{2}\right)^2-\left(\dfrac{1}{2}\right)^2+1\)
\(\Leftrightarrow M=\left[x^2-2.x.\dfrac{1}{2}+\left(\dfrac{1}{2}\right)^2\right]-\left(\dfrac{1}{2}\right)^2+1\)
\(\Leftrightarrow M=\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\)
Vì \(\left(x-\dfrac{1}{2}\right)^2\ge0\forall x\)
Nên \(\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}>0\forall x\)
Vậy \(M=x^2-x+1>0\forall x\)
b) \(M=x^2-x+1\)
\(\Leftrightarrow M=x^2-2.x.\dfrac{1}{2}+\left(\dfrac{1}{2}\right)^2-\left(\dfrac{1}{2}\right)^2+1\)
\(\Leftrightarrow M=\left[x^2-2.x.\dfrac{1}{2}+\left(\dfrac{1}{2}\right)^2\right]-\left(\dfrac{1}{2}\right)^2+1\)
\(\Leftrightarrow M=\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\)
Vì \(\left(x-\dfrac{1}{2}\right)^2\ge0\forall x\)
Nên \(\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\forall x\)
Vậy GTNN của \(M=\dfrac{3}{4}\) khi \(x-\dfrac{1}{2}=0\Leftrightarrow x=\dfrac{1}{2}\)
M= x2 - x+1
a) M = x2-x\(+\dfrac{1}{4}+\dfrac{3}{4}\)
= \(\left(x^2-x+\dfrac{1}{4}\right)^{ }+\dfrac{3}{4}\)
=\(\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\)
d0 \(\left(x-\dfrac{1}{2}\right)^2\ge0\forall x\)
=> \(\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\)
=>M \(\ge\dfrac{3}{4}\Rightarrow M\ge0\left(đpcm\right)\)
b)vì \(M\ge\dfrac{3}{4}\left(a\right)\)
GTNN M =\(\dfrac{3}{4}khi\) x-\(\dfrac{1}{2}=0\)
=> x=\(\dfrac{1}{2}\)