đa thức đã cho có dạng f(x) =(x-1)(x-2)(x-3)+(2x+1)^3
Thủa mãn đầu điều kiện đầu bài:
f(x)=g(x).(3x-5)+m
f(x)=h(x).(5x+2)+n
f(x)=j(x).(7x-1)=p
f(5/3)=m; f(-2/5)=n ; f(1/7)=p
tự thay số nhé Đề ra lẻ quá không nhẩm được
đa thức đã cho có dạng f(x) =(x-1)(x-2)(x-3)+(2x+1)^3
Thủa mãn đầu điều kiện đầu bài:
f(x)=g(x).(3x-5)+m
f(x)=h(x).(5x+2)+n
f(x)=j(x).(7x-1)=p
f(5/3)=m; f(-2/5)=n ; f(1/7)=p
tự thay số nhé Đề ra lẻ quá không nhẩm được
Cho đa thức \(f\left(x\right)=x^5-3x^4+ax^3+bx^2+cx-15\)
a ) Xác định a,b,c để đa thức f(x) chia hết cho đa thức \(g\left(x\right)=x^3-x^2-4x+4\)
b ) Tìm giá trị nhỏ nhất của thương trong phép chia f(x) cho g(x)
a) Tìm a, b trong đa thức f(x)=x2+ax+bx biết f(1,)=-9,f(2)=9
b) tìm số dư của f(x)=1/2x3-4/7x2-2013x+2014x khi chia cho x-5
cho các số thực a, b, c và đa thức g(x)=x^3 + ax^2 + x + 10 có 3 nghiệm phân biệt. Biết rằng mỗi nghiệm của đa thức g(x) lại là nghiệm của đa thức f(x)=x^4 + x^3 + bx^2 + 100x + c. Tính giá trị của f(1)
Cho đa thức f(x) = \(x^4+x^3+x^2+x+1\)tìm số dư khi chia f(x^5) cho f(x)
Cho f(x) =\(2x^5+ax^4+bx^3+cx^2+dx+e\) và g(x) =\(x^2+x+2014\) là những đa thức với hệ số nguyên. Biết rằng phương trình f(x)=0 có 5 nghiệm phân biệt ; g(x) =0 không có nghiệm. Chứng minh \(8\sqrt[3]{f\left(2014\right)}>1\)
Đa thức f(x) khi chia cho x+1 dư 4 , khi chia cho \(x^2+1\) dư 2x+3. Tìm đa thức dư khi chia f(x) cho \(\left(x+1\right)\left(x^2+1\right)\)
cho đa thức f(x)= \(2x^3-ax^2+2bx+2a-1.\)Biết f(x) chia hết cho đa thức g(x)= \(x^2-x-2\). Xác định a,b
Cho đa thức f(x) và 2 số \(a\ne b\). Biết \(f\left(x\right):x-a\) dư \(r_1\); \(f\left(x\right):x-b\) dư \(r_2\). Tìm dư f(x) chia cho \(\left(x-a\right).\left(x-b\right)\)
Cho đa thức bậc 3 f(x) biết:
f(0)=10; f(1)=12; f(2)=4;f(3)=1 Tính f(10)= ?