Lời giải :
Đa thức bậc 3 có dạng :\(ax^3+bx^2+cx+d=0\)
Theo giả thiết bài ra ta có hệ phương trình :
\(\left\{{}\begin{matrix}f\left(0\right)=d=10\\f\left(1\right)=a+b+c+10=12\\f\left(2\right)=8a+4b+2c+10=4\\f\left(3\right)=27a+9b+3c+10=1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}d=10\\a+b+c=2\\8a+4b+2c=-6\\27a+9b+3c=-9\end{matrix}\right.\)
Giai trên máy ta tìm được a , b , c , d lần lượt là :
\(\left\{{}\begin{matrix}a=2,5\\b=-12,5\\c=12\\d=10\end{matrix}\right.\)
Đa thức f(x) có dạng : \(2,5x^3-12,5x^2+12x+10\)
Nhập biểu thức đó bấm CALC , 10 . Ta tìm được số dư là 1380