\(f\left(0\right)=c\), mà \(f\left(0\right)\) nguyên \(\Rightarrow c\) nguyên
\(f\left(1\right)=a+b+c\Rightarrow a+b=f\left(1\right)-c\)
Do \(f\left(1\right)\) nguyên, \(c\) nguyên \(\Rightarrow a+b\) nguyên
\(f\left(2\right)=4a+2b+c\Rightarrow4a+2b=f\left(2\right)-c\) (1)
\(\Rightarrow2a=f\left(2\right)-c-2\left(a+b\right)\)
Do \(f\left(2\right)\) nguyên; \(c\) nguyên; \(a+b\) nguyên \(\Rightarrow2a\) nguyên
Cũng từ (1) \(\Rightarrow2b=f\left(2\right)-c-4a\)
Do \(f\left(2\right);c;4a\) nguyên \(\Rightarrow2b\) nguyên