Lời giải:
$f(1)=a+b+c=6$
$f(2)=4a+2b+c=16$
$f(12)-f(-9)=(144a+12b+c)-(81a-9b+c)$
$=63a+21b=21(3a+b)$
$=21[(4a+2b+c)-(a+b+c)]=21(16-6)=21.10=210$
Lời giải:
$f(1)=a+b+c=6$
$f(2)=4a+2b+c=16$
$f(12)-f(-9)=(144a+12b+c)-(81a-9b+c)$
$=63a+21b=21(3a+b)$
$=21[(4a+2b+c)-(a+b+c)]=21(16-6)=21.10=210$
Cho đa thức f(x) = ax2 + bx + c Tính giá trị f(-1) biết rằng a + c = b + 2018
Cho đa thức f(x)=ax^2 +bx +c(a,b,c là các hằng số). Chứng minh rằng:f(3). f(-2)>=0 nếu13a+b+2c=0
cho đa thức f(x)=ax^2 +bx +c(a,b,c là các hằng số). Chứng minh rằng:f(3). f(-2)>=0 nếu a,b thỏa mãn a +b=0
bài 1:Xác định đa thức f(x) = a\(x^2\) + bx + c biết f(1) = 3, f(3) = 5, f(5) = 7
Cho đa thức \(f\left(x\right)=ax^3+bx^2+cx+d\) (a,b,c,d là các số nguyên) . Biết 7a+b+c = 0 . Chứng minh rằng f(3) . f(-2) là số chính phương
Cho đa thức f(x)=ax^3+4x(x^2-1)+8; g(x)=x^3-4x(bx+1)+c-3 trong đó a,b,c là hằng số.Xác định a,b,c để f(1)=g(1); f(2)=g(2);f(3)=g(3)
cho đa thức f(x)=ax2+bx+c xác định a,b,c trong các trường hợp :
a) f(0)=2;f(1)=7;f(-2)=-14
b)f(-2)=0;f(2)=0 và a lớn hơn c 3 đơn vị
c)f(0)= -2 ; 4f(x)-f(2x-1)=6x-6
Cho đa thức f(x) = ax2+bx+c . Biết 7a + b=0. Chứng tỏ rằng f(10). f(-3) ≥ 0
Cho 2 đa thức f(x) = 2x2+ax+4 và g(x)= x2_5x_b (a,b là hằng)
Tìm các hệ số a,b sao cho f(1)=g(2) và f(-1)=g(5)